Some Notations:

Let R be a commutative ring nich multiplicative identity 1. (R = Z, Q, R, C, F) a field For an integer N>1, we define: (general linear group) GLn(R) = { invertible nxn matrices with all entries in R] Fout: A matrix AEGLn(R) is invertible if and only if det (A) is invertible in R. This implies: $GL_n(\mathbb{Z}) = \{A: n \times n \text{ matrices nith all entries in } \mathbb{Z}\}$ and $det(A) = \pm 1$ Let F be a field. (F=Q, R, C) $GLn(F) = \{A: n \times n \text{ matices with all entries in } F\}$ and $det(F) \neq 0$

Let F be a field and V a vector space over F.
We assume that
$$\dim_{F} V = N < 160$$
.
Then we can find a basis $[V_1, \dots, V_n] \leq F$
such that
(1) $V = \operatorname{span}_{F} [V_1, V_2, \dots, V_n]$
(2) V_1, \dots, V_n are linearly independent.
We call $\{V_{11}, \dots, V_n\}$ is a basis for V.
Remark: We have to - many choices of basis.
However, the number of elements in a basis
is always Π . (That is how we define
the dimension of a vector space.)
Definition: Let V be a vector space. An isomorphism
is a bijective linear map T: $V \rightarrow V$.
Then we set:
 $GL(V) = \{isomorphisms of a vector space V].$

Lemma: Assume that
$$\dim_{F} V = n$$
. Then there is
a bijection between $CL(V)$ and $GL_n(F)$.
Remark: This lemma implies, all the isomorphisms
between V and V are indeed invertible matrices.
Complex numbers.
Recall: $C = \{z = a + bi\}$: $a, b \in \mathbb{R}$, $i^2 = -1\}$
For $z = a + bi$,
 $\cdot a$ is called the real part of z , denoted by $Re(z)$
 $\cdot b$ is called the imaginary part of z , denoted by $In(z)$.
There is an bijection between C and \mathbb{R}^2 .
 $Inagloon C$ and \mathbb{R}^2 .
There is an bijection between C and \mathbb{R}^2 .
There is an bijection between C and \mathbb{R}^2 .
This also implies: we can view C as a
 \mathbb{R} -vector space and $\dim_{\mathbb{R}} C = 2$.

By Calculus II, we can express a point in
$$\mathbb{R}^{2}$$
 by its
polar coordinates:
 $Z = a + b \cdot i$
 $= r\cos\theta + r\sin\theta \cdot i$
 $= r\cos\theta + r\sin\theta \cdot i$
 $= r(\cos\theta + i\sin\theta)$
 $= r e^{i\theta}$
with $r \ge 0$ and $\theta \in \mathbb{R}$.
Note: if $z_{1} = r_{1}e^{i\theta_{1}}$, $z_{2} = r_{2}e^{i\theta_{2}}$, then $z_{1}z_{2} = r_{1}r_{2}e^{i\theta_{1}\theta_{2}}$
Definition: Let $z = a + bi$. Then the conjugate of z ,
denoted by \overline{z} , is defined by:
 $\overline{z} = a - bi$
Check: $z \cdot \overline{z} = a^{2} + b^{2}$.
Note: $|z| = (\overline{z} \cdot \overline{z})^{\frac{1}{2}} = (a^{2} + b^{2})^{\frac{1}{2}}$.
Next, we set
 $C[x] = \{ polynomials with coefficients in C \}$.

Theorem (Fundamental theorem of algebra)
Let
$$f(x) \in C[x]$$
 and $f(x)$ is not a constant.
Then $f(x)$ has a root in C.
Corollary: Let $f(x) \in C[x]$ of degree n .
 $f(x) = Q_0 (x - \alpha_1) (x - \alpha_2) - (x - \alpha_n)$.
with $Q_0, \alpha_1, \dots, \alpha_n \in C$.
Proof of corollary: By findlemental theorem of $f(x)$.
 $f(\alpha) = 0$ for some $\alpha \in C$.
Notice that C is a field $\Rightarrow C[x]$ is a Euclidean
domain. Then we can find $g(\alpha)$ and $r(x)$ set.
 $f(x) = q(x) (x - \alpha_1) + r(x)$ with
 $deg r(x) < deg (x - \alpha_1) = 1$ ($r(\alpha)$ is a constant)
Notice that $f(\alpha) = 0$, $q(\alpha) (\alpha - \alpha) = 0 \Rightarrow r(\alpha) = 0$.
 $r(x)$ is a constant and $r(\alpha) = 0 \Rightarrow r(x) = 0$.
This shows: $f(x) = q(x) (x - \alpha)$.

Then we set
$$f_1(x) = \frac{f(x)}{x - \alpha_1} = g(x)$$
.
We apply the fundamental theorem again and we
have $f_1(x) = g_1(x)(x - \alpha_2)$
We continue this process and we finally get:
 $f(x) = Q_0(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$. \Box
Let G be a finite group.
Let V be a finite dimensional vector space over C .
Definition: A (linear) representation of G is a group
homomorphism : $\pi : G \longrightarrow GL(V)$, that is,
(1) for any $g \in G$, $\pi(g) \in GL(V)$
(2) for any $g_1, g_2 \in G$, $\pi(g_1g_2) = \pi(g_1)\pi(g_2)$
(3) $\pi(e) = Id_V$.
Here e is the identity of G
Id V is the isomorphism on V sending v to v .

We use the notation
$$(\pi, V)$$
 for a representation of G
Furthermore, if $\dim_{\mathbb{C}} V = n$, we say that the
degree / dimension of π is n .
We use the notation: deg $\pi = \dim \pi = n$.
Remark: If $\dim_{\mathbb{C}} V = n$, we can identify $GL(V)$
with $GLn(\mathbb{C})$. This means, when fixed a
basis of V , $\pi(g)$ can be identified with
an $n \times n$ invertible matrix of $GLn(\mathbb{C})$.
Remark: Notice that $\pi(g) \in GL(V)$ and $\pi(g)$ is a bison
map and hence $\pi(g)$ is totally determined by
 $\pi(g)V_1, \cdots, \pi(g)V_n$ provided that $\{V_1, \cdots, V_n\}$ is a basis.
Lemma: Let (π, V) be a representation of G . Then
 $\pi(g^{-1}) = \pi(g)^{-1}$.
Proof: This is due to:
 $1_V = \pi(e) = \pi(g \cdot g^{-1}) = \pi(g) \cdot \pi(g^{-1}) = \pi(g^{-$

. \

Example I: Let
$$V = C$$
 $(\dim_{C} V = 1)$
Then $GL(V) = C^{X}$ $(C^{X} \longrightarrow GL(V))$
 $a \mapsto (v \mapsto av)$
The trivial representation is:
 $\pi(g) = 1$ for all $g \in G$.
Remark: The trivial representation con be defined for arbitrary
groups. However, in most cases, the representation is
dependent on the group G.
Example II: Let $G = Sn = \{permutations of n numbers\}$
 $V = C^{n} = span_{C} \{e_{1}, \dots, e_{n}\}.$
Then we define a representation (π, V)
 $\pi: Sn \longrightarrow GL(V)$
 $\sigma \mapsto \pi(\sigma)$
with $\pi(\sigma)(\sum_{i=1}^{n} a_{i}e_{i}) = \sum_{i=1}^{n} a_{i}e_{\sigma(i)}$
This is called the standard representation for Sn .

Another way to consider this representation is:
V has a standard basis
$$\{e_1, \dots, e_n\}$$

Then $\pi(\sigma)$ is totally determined by $\pi(\sigma)ei$
and we know: $\pi(\sigma)e_i = e_{\sigma(i)}$.
Sometimes we use the notaction:
 (std, C^n) for the standard representation of Sn .
Example II: Group Algebra and right translation.
 $(Next class)$