Definition: Let G be a finite group. We define the
group algebra, denoted by, CIGI to be the
set of formal sums:
$$\sum_{g \in G} a_g \cdot g$$
 with $ag \in C$.
 $C[G]: = \begin{cases} \sum_{g \in G} a_g \cdot g : a_g \in C, \end{cases}$
We can define the following operations:
is addition: $\sum_{g \in G} a_g \cdot g + \sum_{g \in G} b_g \cdot g = \sum_{g \in G} (a_g + b_g) \cdot g.$
 $(C[G], +)$ is an abelian group.
is scalar multiplication by $C: \quad \lambda \in C, \quad \sum_{g \in G} a_g \cdot g = \sum_{g \in G} a_g \cdot g = \sum_{g \in G} a_g \cdot g = \sum_{g \in G} (\lambda a_g) \cdot g.$
The scalar multiplication and the addition will make
 $C[G] = |G| \leftarrow the conditive / order
ord dim $C[G] = |G| \leftarrow the conditive / order
of G.$$

Remark: Some times we use notation "eg" instead of g. In this case { eg: gEG) is a basis for CLG]. 3) the multiplication: $\left(\sum_{s \in G} a_s \cdot S\right) \cdot \left(\sum_{t \in C} b_t \cdot t\right) = \sum_{s, t \in G} a_s \cdot b_t \cdot (st)$ $= \sum_{q \in G} \left(\sum_{st=q} a_{s} b_{t} \right) g$ Example/Definition: Let G be a finite group nith its group algebra CIGI, the regular representation (R, C[G]) is defined by: $R: \ \mathsf{G} \longrightarrow \mathsf{GL}(\mathbb{C}[\mathsf{G}])$ $g \longrightarrow R(g)$ $R(g)\left(\sum_{t\in G} a_t t\right) = \sum_{t\in G} a_t \cdot gt$ where (or $R[g)\left(\sum_{t\in C} a_t e_t\right) = \sum_{t\in C} a_t e_{gt}$.

We only check the homomorphism part, that is

$$R(9, 9_1) = R(9_1) R(9_2)$$

Pick an arbitrary $\sum_{t \in G} a_t \cdot t \in C[G]$
 $R(9_1g_2) \left(\sum_{t \in G} a_t \cdot t\right) = \sum_{t \in G} a_t \cdot g_1g_2 t$
 $R(9_1) R(9_2) \left(\sum_{t \in G} a_t t\right) = R(9_1) \left(R(9_2) \sum_{t \in G} a_t t\right)$
 $= R(g_1) \left(\sum_{t \in G} a_t \cdot g_2 t\right)$
 $= \sum_{t \in G} a_t \cdot g_1g_1 t = R(9_1g_2) \left(\sum_{t \in G} a_t t\right)$
Since we chose $\sum_{t \in G} a_t \cdot t$ varbitranly, we showed:
 $R(9_1, 9_2) = R(9_1) R(9_2)$
Remark: This representation is very important in later
chapters, since all the irreducible representations
(the building blocks) will show up in the
regular representation.

Subrepresentations.
Let
$$(\pi, V)$$
 be a representation of G, and WSV
be a subspace.
Definition: We say that W is stable under the action
of G if for any $g \in G$ and any $w \in W$,
 $\pi(g) W \in W$.
In this case, we get a representation of G is the
following way: $G \longrightarrow GL(W)$
 $g \longmapsto \pi(g)$
sime $\pi(g) W \in W$ for all $g \in G$ and $w \in W$.
Definition: We use (π^W, W) for this representation. and this
is called a subrepresentation of (π, V) .
Recall: In the linear algebra class, we have a the following
result: bet $W \subseteq V$ be two vector space, such that
 $V = W \oplus W'$.

$$V \xrightarrow{T} W$$
 for any g \in G.

$$Ti(g) \xrightarrow{V} \xrightarrow{T} W$$

We use $Hom_G(V, W)$ for the set of all interturining operators.
Definition: An interturing operator $T: V \rightarrow W$ is an isomorphism
if T is also a bijection between V and W .
In this case, we say that two reprises (Ti, V) and (Tia, W)
are isomorphic.
Definition: Let T be an interturing operator for
 (Ti, V) and (Tiz, W) . Then
i), ker $(T) = \{ v \in V : T(v) = 0 \}$
ii) ker $(T) = \{ v \in V : T(v) = 0 \}$
iii) $Im(T) = \{ w \in W: there exists $v \in V$ s.t. $T(v) = w \}$
Lemma: ker (T) , $Im(T)$ are stable under G.
This means : ker (T) is a subrepon of V
 $Im(T)$ is a subrepon of W .$

Prof: (1) Let
$$v \in Ver(T)$$
 and $g \in G$.
 $T(\pi_{1}(g) v) = \pi_{3}(g) \circ T(v) = O \implies \pi_{1}(g) v \in Ver(T)$
(2) Let $w \in Im(T)$ and $g \in G$
Then we can find $v \in V$ sit. $w = T(v)$
 $\pi_{3}(g) w = \pi_{3}(g) \circ Tv = T(\pi_{1}(g) v) \in Im(T)$. R.
Some linear algebra results:
Definition: Let V be a vector space. A projection is a linear
map $p: V \rightarrow V$ satisfying $P \circ P = P$.
Exercise: Let V be a vector space and $p: V \rightarrow V$ a projection.
Then $V = Im(p) \oplus Ver(p)$.
Hint: for any $v \in V$, $v = p(v) + (v - p(v))$. =[5]
show: $p(v) \in Im(p)$, $v - p(v) \in Ver(p)$ and $Im(p) \cap Ver(p)$
Observation: Let V be a vector space and suppose it can
be written as a direct sum $V = W \oplus W'$. Then
we can construct a projection in the following way:
 $V = W \oplus W'$ $P: V \rightarrow V$

Notice that
$$P|_{W} = Id_{W}$$
 and $P|_{W'} = \tilde{f}\tilde{D}$]
That is using we call p a projection.
Proof of Theorem: Suppose that (π^{W}, W) is a subspace of
 (π, V) . Then we can find $W \leq V$, a subspace sit.
 $V = W \oplus W'$.
Then we can construct a projection $P: V \Rightarrow V$.
Next, we construct a new map: $P_{o}: V \Rightarrow V$
 $P_{o} = \frac{1}{|G|} \sum_{g \in G} \pi(g) \circ P \circ \pi(g^{-1})$
 $C[aim: :!! P_{o} is a projection$

Sime
$$Im(p_0) = W$$
, we can set $W_0 = \ker(p_0)$
then $V = Im(p_0) \oplus \ker(p_0) = W \oplus W_0$
and W_0 is stable under G .

Prof of Claim II: for any
$$h \in G$$

 $\pi(h) \bullet P_{\circ} = \frac{1}{1GI} \sum_{g \in G} \pi(h) \pi(g) \bullet p \bullet \pi(g)^{d}$
 $= \frac{1}{1GI} \sum_{g \in G} \pi(hg) \bullet p \bullet \pi(hg)^{d} \bullet \pi(h)$
 $g' = hg = \frac{1}{1GI} \sum_{g' \in G} \pi(g') \bullet p \cdot \pi(g') \bullet \pi(h) = P_{\circ} \bullet \pi(h)$.
Proof of Claim III: For any $v \in V$, $\pi(g)^{d} v \in V$
 $p \cdot \pi(g)^{d} v \in W \Rightarrow \pi(g) p \pi(g)^{d} v \in W$
 $\Rightarrow P_{\circ} v = \frac{1}{1GI} \sum_{g \in G} \pi(g) p \pi(g)^{d} v \in W \Rightarrow Im(P_{\circ}) \subseteq W$.
For any $w \in W$, $\pi(g^{d}) w \in W \Rightarrow p \pi(g^{d}) w = \pi(g^{d} w)$
 $\Rightarrow \pi(g) p \pi(g)^{d} w = w$ $(P|_{W} = Idw)$
 $\Rightarrow P_{\circ} W = \frac{1}{1GI} \sum_{g \in G} \pi(g) p \pi(g)^{d} w = w \Rightarrow Im(P_{\circ}) \cong W$.
Note: this also shows: $P_{\circ}|_{W} = IdW$.
Proof of Claim I: We first show $P_{\circ} \cdot P = P$.

For
$$v \in V = W \oplus W'$$
, $v = w + w'$
 $P_{o} P(v) = P_{o} W = W$
 $P(v) = w$
Then
 $P_{o} \cdot P_{o} = P_{o} \cdot \frac{1}{|G|} \sum_{g \in G} \pi(g) P(g)^{-1}$
 $= \frac{1}{|G|} \sum_{g \in G} P_{o} \cdot \pi(g) \cdot P \cdot \pi(g)^{-1}$
 $= \frac{1}{|G|} \sum_{g \in G} \pi(g) \cdot P \cdot \pi(g)^{-1}$
 $= \frac{1}{|G|} \sum_{g \in G} \pi(g) \cdot P \cdot \pi(g)^{-1} = P_{o}$
This completes the proof of the claims and hence
the theorem.

П