Recall:

Proposition: (1), Let X be the character of an irreducible repr, then $(\chi|\chi) = 1$ (2) Let X1, X2 be the characters of two non iso morphic repus (TT,, V,) and (TT, V2) then $(\chi_1 | \chi_L) = 0$. Let (TT, V) be a repr of G. Then $(\pi, V) = (\pi, V_1) \oplus \cdots (\pi_k, V_k)$ with V_i irreducible. Furthermove, we can rearrage Vi such that $(\pi, V) = m_1(\pi_1, V_1) \oplus m_2(\pi_2, V_2) \oplus \cdots M_r(\pi_r, V_r)$ such that distinct Vi. Vj are non-isomorphic Furthermore, if we allow $m_{\tilde{i}} = 0$, $(\pi, V) = (+) m_{\rho} (\rho, W)$ Wirred Here the direct own is over all irreducible repris of G. We use the notation Irr(G) for all (non-isomorphic) repris of G.

Definition: mp is called the index/multiplicity of (P.W) in (T.V).
We use the notection
$$\langle T, p \rangle := Mp$$
.
Theorem: Let (T.V) be a repr of G with character ϕ
Let (P,W) be an irreducible repr of G with
character X Than
 $\langle T, p \rangle = \langle \phi | X \rangle$
Proof: Suppose that $(T, V) = \bigoplus Mp(P, W)$
Then $\phi = \sum_{W \in Irrig} Mp \langle XW | X \rangle = Mp$. II.
Corollary: Two reprise with the same character are isomorphic
Proof: $(Ti, V_1) = \bigoplus MW(P, W) \longrightarrow \phi_1$
 $(Ti_2, V_2) = \bigoplus MW(P, W) \longrightarrow \phi_2$
 $\psi \in Irright W = Time(G)$

Theorem: Let
$$\phi$$
 be the character for a regn (TT, V)
11, $(\phi|\phi)$ is always an integer.
12, $(\phi|\phi) = 1$ if and only if (TT, V) is irreducible.
Proof: 1) $(TT, V) = (\stackrel{+}{T} \quad m_W (\rho, W) \quad \longrightarrow \phi$
 $(\phi|\phi) = (\sum_{W} m_W X_W | \sum_{W}, m_{W'} X_{W'})$
 $= \sum_{W} m_W X_W | \sum_{W}, m_{W'} X_{W'})$
 $= \sum_{W \in Irr(G)} m_W M_{W'} (X_W | X_{W'})$
 $= \sum_{W \in Irr(G)} m_W^2$.
(2) (=) $(\phi|\phi) = 1 \Rightarrow$ only 1 $m_W = 1$ and others = 0.
 $\Rightarrow (TT, V) = (\rho, W)$ for some $W \in Irr(G)$.
(4=) If (TT, V) is irreducible, then $(\phi|\phi) = 1$. The second sec

Recall: the regular representation: G = G $V = C[G] = \begin{cases} \sum_{g \in G} a_g g : a_g \in C \end{cases}$ $R(h)\left(\sum_{\substack{g \in G}} 0_g g\right) = \sum_{\substack{g \in G}} a_g(hg)$ We know: $(R, G[G]) = \bigoplus_{W \in Jrr(G)} m_{p.}(p, W)$ For each $W \in Irr(G)$, $Mp = dim_{C}W(\pm t)$ Theorem: Proof: Let r_G be the character of (R, C[G]). Claim: $Y_{a}(e) = |a|$ $r_{a}(q) = 0$ if $g \neq e$. Proof of Claim: $r_{G}(e) = tr(\pi(e)) = tr(Id_{CLG})$ $= \dim_{\mathbb{C}} \mathbb{C}[\mathbb{C}] = |\mathbb{C}|$ $9 \neq r_{G}(q) = tr(\pi(q))$ Notice that: for any hEG, efgEG, ghth. \Rightarrow $tr(\pi(g))=0 \Rightarrow \Gamma_{G}(g)=0.$ We know $Mp = \langle r_G | \chi_p \rangle$ (χ_p is the character)

$$\langle r_{\alpha} | \chi_{p} \rangle = \frac{1}{|c|} \sum_{g \in G} r_{\alpha}(g) \chi_{p}(g)$$

$$= \frac{1}{|c|} r_{\alpha}(e) \chi_{p}(e) = \frac{1}{|c|} |c| \cdot \dim_{e} W$$

$$= \dim_{e} W.$$
Next, denote $Irr(C)$ the set of all non-isomophic irreducible repass. For each $(pW) \in Irr(C)$, set $n_{W} = \dim_{e} W$
ond χ_{W} its charader
$$Corollary: (a) |G| = \sum_{W \in Irr(G)} n_{W}^{2}$$

$$(b) If etg \in G, then \sum_{W \in Irr(G)} n_{W} \chi_{W}(g) = 0.$$
Proof: We knows : $(R, CIC] = \bigoplus_{W \in Irr(C)} n_{W} (p, W)$

$$Let r_{G} be the character, then
$$r_{G} = \sum_{W \in Irr(C)} n_{W} \chi_{W}$$

$$(1) Take g = e, r_{G}(e) = |G|$$

$$\chi_{W}(e) = tr(p(e)) = dIm_{e} W = n_{W}$$

$$\Rightarrow |G| = \sum_{W \in Irr(C)} n_{W}^{2}$$$$

We define: H:= {f: G→C, f is a class function J. It is easy to show: this is a vector space/C. Indeed, this is a finite-dimensional vector space, and we want to compute its basis.

Definition: Let
$$g_1, g_2$$
 be two elements in G . We say
they are conjugate if we can find $g \in G$ such that
 $g g_1 g_1^{-1} = g_2$.
This defines an equivalent relation on G , which partitions
 G into (conjugate) classes.: that is
 $G = \bigsqcup_{i=1}^{i=1} f hgh^{-1}$: $h \in G$]
 $Eg] \in C(G)$
Here $C(G)$ is the set of all nonequivalent classes.
We can construct a basis for G by $C(G)$.:
for $[g] \in C(G)$, we define
 $f_{Eg1}(h) = \begin{cases} 1 & \text{if } h \text{ and } g \text{ are conjugate} \\ 0 & \text{othenise.} \end{cases}$
Exercise: $\{f_{Eg1}: Eg] \in C(G)\}$ will form a basis for H
and hence $\dim_{G} H = \# C(G)$, the number of
Non equivalent conjugate classes.

On the other hand, we show:

$$\begin{cases} \overline{\chi_W}: W \in Irr(G) \end{cases} \text{ form on orthogonormal basis form.} H. \\
This implies: the number of non-isomorphic irreducible reports = dimC H = the number of non-equivalent conjugates classes of G. \\
Theorem: $\{\overline{\chi_W}: W \in Irr(G)\}$ forms an orthonormal basis for H.
Proposition: Let $f: G \rightarrow C$ be a class function. and (T, V) be a reprint of G. Then we can define a linear map:
 $\pi(f) = \sum_{\substack{i \in G \\ j \in G}} f(g) \pi(g) : V \rightarrow V. \\
\text{If V is irreducible and dimC V = n, then $\pi(f) = \lambda \operatorname{Id}_V$ and $\lambda = \frac{|G|}{n} < f|\overline{\chi} > \text{Here } \chi \text{ is the character of V.} \\
(Note: if $(T_i V) = (T_i, V_i) \oplus (T_i, V_i), \text{ then } \pi(f) = \pi_i(f) + \pi_i(f) + \pi_i(f) \end{cases}$$$$$

Proof: We first show that $\pi(f)$ is an intertwining operator

For held,
$$\pi(h) \pi(f) \pi(h^{-1}) = \pi(h) \left(\sum_{g \in G} f(g) \pi(g) \pi(h^{-1}) \right)$$

$$= \sum_{g \in G} f(g) \pi(h g h^{-1})$$

$$= \sum_{g \in G} f(h g h^{-1}) \pi(h g h^{-1})$$

$$= \sum_{g \in G} f(g) \pi(g) = \pi(f).$$
Sime V is irraduible, then $\pi(f) = \lambda \operatorname{Idv}(h g \operatorname{Schur's Lemma})$
Then: $\lambda = -h \operatorname{tr}(\pi(f)) = -h \operatorname{tr}(\sum_{g \in G} f(g) \pi(g))$

$$= -h \sum_{g \in G} f(g) \operatorname{tr}(\pi(g))$$

$$= -h \sum_{g \in G} f(g) \chi(g) = \frac{|h|}{h} < f| \overline{\chi} > n.$$
Proof of Theorem: By prevends lectures, we know
 $\{\overline{\chi_W}: W \in \operatorname{Irr}(G)\}$ are orthonormal.
So it sufficies to show they generate H.
Proof by contradiction. Suppose not. Then we can find
for $\in H$ such that $< f_0 | \overline{\chi_W} > =0$ for all $W \in \operatorname{Irr}(h)$

(This is because <.1.) is an inner form on H and hank
we can consider the orthogonal decomposition.
Let
$$(p, W)$$
 be an irreduible reprint of G, we consider
 $p(f): W \rightarrow W$
We know $p(f) = \frac{|G|}{dim W} < f/X_W > = 0$
Theofore $p(f)$ is always the zero map.
Vect, we consider $(R, GIGI)$
Sime $(R, CIGI) = \bigoplus_{W \in Irr(C)} dim W \cdot (P, W)$
 $= R(f) = \sum_{W \in Irr(G)} dim W \cdot p(f) = O$.
By definition: $O = R(f) e = (\sum_{g \in G} f(g) R(g))(e)$
 $= \sum_{g \in G} f(g) ge = \sum_{g \in G} f(g) g$
This forces: $f(g)=0$ for all $g \in G$.