Some notations
Lex f(x) and g(x) be two functions and
$$g(x) \ge 0$$
.
We write $f(x) = O(g(x))$ (or $f(x) \ll g(x)$) if
there exists a constant C such that
 $|f(x)| \le C g(x)$.
We write $f(x) = o(g(x))$ if $\lim_{x \to \infty} \frac{f(x)}{f(x)} = 0$.
Dirichlat's Theorem: Let a, q be integers and $(a, q) = 1$.
Then there are infinitely many primes in AP:
 $a, a+q, a+2q, a+3q, --$
Definition: Let $\chi (modq)$ be a Dirichlet character.
For $s \ge 1$, we define Dirichlet L-function:
 $L(s, \chi) = \sum_{n \ge 1} \frac{\chi(n)}{n!}$
Proposition (Prove Later):
 (1) When $s \ge 1$, $L(s, \chi)$ is absolutely convergent

(2) When
$$s > 1$$
, we have the Eulor product expansion:

$$L(s, \chi) = \prod_{p} \left(1 - \frac{\chi(p)}{p^{s}}\right)^{-1}$$
where the (infinite) product is over all primes p .
Next, we "take" by of $L(s, \chi)$ and we expect:

$$\log_{p} L(s, \chi) = \log_{p} \prod_{p} (1 - \frac{\chi(p)}{p^{s}})^{-1} = \sum_{p} \log_{p} \frac{1}{p} \frac{\pi p}{p^{s}}$$
Proposition (Prove Lator): $\log_{p} \frac{1}{1-2} = z + O(|z|^{2})$ if $|z| < 1$.
This implies:

$$\frac{\log_{p} L(s, \chi) = \sum_{p} \frac{\chi(p)}{p^{s}} + O(1)}{\log_{p} L(s, \chi) = \sum_{p} \frac{\chi(p)}{p^{s}} + O(1)}$$
Spetch of Dirichlet's Theorem:
Let p be a prime in Γ_{a} , at q , at q , at q , $--3$
Then $p \equiv a \pmod{q}$.
Thus fore, if we can show:

$$\lim_{s \to 1^{+}} \sum_{p = a \pmod{q}} \frac{1}{p^{s}} = \infty$$

We complete the proof of Dirichlet's Theorem.
We again introduce:

$$I_{n=a}(mdq)^{(n)} = \begin{cases} 1 & \text{if } n \equiv a \pmod{q} \\ 0 & \text{othowise} \end{cases}$$
and we showed:

$$I_{n=a}(mdq) = \frac{1}{\varphi(q)} \sum_{\chi(mdq)} \overline{\chi(a)} \chi$$
There fore:

$$\sum_{P \equiv a} \frac{1}{P^{S}} = \sum_{P} \frac{1}{P^{S}} \cdot \frac{1}{\varphi(q)} \sum_{\chi(mdq)} \overline{\chi(a)} \chi(p)$$

$$= \frac{1}{\varphi(q)} \sum_{\chi(mdq)} \overline{\chi(a)} \sum_{P} \frac{\chi(p)}{P^{S}}$$

$$= \frac{1}{\varphi(q)} \sum_{\chi(mdq)} \overline{\chi(a)} \log L(s,\chi) + O(1)$$

$$= \frac{1}{\varphi(q)} \log L(s, 1q) + \frac{1}{\varphi(q)} \sum_{\chi(mdq)} \overline{\chi(a)} \log L(s,\chi) + O(1)$$

$$= \frac{1}{\varphi(q)} \log L(s, 1q) + \frac{1}{\varphi(q)} \sum_{\chi(mdq)} \overline{\chi(a)} \log L(s,\chi) + O(1)$$

Proposition (Prove Later):
(1) For Iq,
$$\lim_{s \to 1^+} L(s, Iq) = \infty \Rightarrow \lim_{s \to 1^+} \log L(s, Iq) = \infty$$

2) For $X \neq Iq$, $L(1, X) \neq 0 \Rightarrow \lim_{s \to 1^+} \log L(s, X)$ bounded.
This is the most difficult part!
This will finally shows: $\lim_{s \to 1^+} \sum_{p \equiv a \mod q} \frac{1}{p^s} = \infty$. \Box .
Key ingredients:
(1) The absolute convergence of one infinite series/product.
(2) What is the log-function for complex numbers?
(3) How to show $L(1, X) \neq 0$ when $X \neq Iq$.
We will discuss (1) and (2) in Part II.
Me will discuss (1) and (2) in Part II.

Infinite series
Let
$$\sum_{n=1}^{10}$$
 an be on infinite series. Denote by
 $S_n = \sum_{k=1}^{n} a_k$ its n-th pertial sum.
Definition: An infinite series is convergent if him Sn exists
Definition: An infinite series is absolutely convergent if
 $\sum_{n=1}^{10} |a_n|$ is convergent. (or $\sum_{n=1}^{10} |a_n| < 100$)
We can generalize this to a series of functions:
Let $\sum_{n=1}^{10} f_n(x)$ be on infinite series of functions.
Let $\sum_{n=1}^{10} f_n(x)$ be on infinite series of functions.
Definition: $\sum_{n=1}^{10} f_n(x)$ is convergent if for each $x \in I$.
its n-th paritial is convergent.
Definition: $\sum_{n=1}^{10} f_n(x)$ is absolutely convergent.
Definition: $\sum_{n=1}^{10} f_n(x)$ is absolutely convergent.
 $\sum_{n=1}^{10} [f_n(x)]$ is convergent for all $x \in I$.
 $\sum_{n=1}^{10} |f_n(x)| < 100$)

Example:
$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

When $s>1$, $L(s, \chi)$ is absolutely convergent.
Prof: It suffices to show: $\sum_{n=1}^{\infty} \left| \frac{\chi(n)}{n^s} \right| < \infty$ for any $s>1$.
Abtive that $|\chi(n)| \in [1, 0] \Rightarrow \left| \frac{\chi(n)}{n^s} \right| < \frac{1}{n^s}$
By p-series test, $\sum_{n=1}^{\infty} \frac{1}{n^s}$ is convergent when $s>1$.
Therefore, $L(s, \chi)$ is absolutely convergent when $s>1$.
Riemann 20ta function: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} (= L(s, 11))$
Proposition: (1) $\lim_{s \to 1^+} \zeta(s) = \infty$
(2) For $|, $\zeta(s) = O(\frac{1}{s-1})$
Proof: Observation: $\int_{n}^{n+1} \frac{1}{\chi^s} d\chi \le \frac{1}{n^s} \le \int_{n-1}^{n} \frac{1}{\chi^s} d\chi$
when $n \le \chi \le n+1$, $\frac{1}{\chi^s} \le \frac{1}{n^s}$$

This shows:
$$\int_{n}^{n+1} \frac{1}{x^{s}} dx \leq \int_{n}^{n+1} \frac{1}{h^{s}} dx = \frac{1}{h^{s}} (n+1-n)$$

$$= \frac{1}{h^{s}}.$$
(1) $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{h^{s}} \geq \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{s}} dx$

$$= \int_{1}^{\infty} \frac{1}{x^{s}} dx = \frac{x^{1-s}}{1-s} \Big|_{1}^{\infty} = \frac{1}{s-1}.$$

$$\Rightarrow \lim_{s \to 1^{+}} \zeta(s) \geq \lim_{s \to 1^{+}} \frac{1}{s-1} = \infty$$

(2) $\zeta(s) = 1 + \sum_{n=2}^{\infty} \frac{1}{n^{s}} \leq 1 + \sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{1}{x^{s}} dx$

$$= 1 + \int_{1}^{\infty} \frac{1}{x^{s}} dx = 1 + \frac{1}{s-1}.$$
When $s < 2$, $1 < \frac{1}{s-1}$
 $\zeta(s) \leq 1 + \frac{1}{s-1} < \frac{1}{s-1} + \frac{1}{s-1} = \frac{2}{s-1}.$

$$\Rightarrow \zeta(s) = O(\frac{1}{s-1})$$

Infinite product. Let San] be a sequence, and we want to study the infinite product: n=1

Set
$$P_n = \prod_{k=1}^n a_k$$
 n-th partial product
Definition: An infinite product is convergent if
him P_n exists.
Proposition: If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, and $a_n \neq 1$
for all n. Then the infinite product:
 $\prod_{n=1}^{\infty} \left(\frac{1}{1-a_n}\right)$
is convergent. Moreover, the product is non-zero.