(1)
$$\Rightarrow$$
 (3) Suppose not. Let $a_1 \in S$.
 R_1 is not maximal \Rightarrow (an find a_2 s.t. $a_1 \neq a_2$
 a_3 is not max($e \Rightarrow$ (an find a_3 s.t. $a_2 \neq a_3$
Then we can find an ascendig chain:
 $a_1 \neq a_1 \neq a_3 \neq a_4 \cdots$
and this will never become constant. A contradiction!
(3) \Rightarrow (1) Let $a \leq A$ be on ideal.
 $S: = \begin{cases} finitaly generated ideals \leq a \end{cases}$
S is non-empty, as zero ideal $\in S$.
Then S has a maximal element a' .
Claim: $a' = a$
(Proof: Suppose not. Then $a' \neq a$ and choose $x \in a - a$)
Then $< a', x > is$ finitaly generated.
 $\Rightarrow < a', x > \in S$ and $a' \neq < a', x >$
A contradiction to that a' is maximal.
 $a' = a$, a' finitaly generated $\Rightarrow a$ is finitaly generated.
 $a' = a$, a' finitaly generated $\Rightarrow a$ is finitaly generated.
Example: Euclidean domain \Rightarrow PID \Rightarrow Noetherian ring.

Definition: A (left R-module M is an ababian group with
an operation:
$$R \times M \rightarrow M$$
; $(r,m) \mapsto r.m$ satisfying:
(1) $(r_1 r_2). m = r_1.(r_3.m)$ $r_1, r_2 \in R$, $m \in M$.
(2) $1.m = m$
(3) $(r_1 + r_2).m = r_1.m + r_3.m$, $r_1.(m_1 + m_2) = r.m_1 + r.m_2$
 $r_1, r_2, r \in R$, $m_1, m_2, m \in M$.
Remark: We can always view R as a R-module.
Definition: Let M be a R-module. $M' \subseteq M$ is a R-submodule
if (1) M' is a subgroup of M
(2) for any $r \in R$ and $m' \in M'$, $r.m' \in M'$.

Remark: When consider R as R-module, the submodules are ideals. Let $M' \subseteq M$ be a submodule. Then we can define the quotient module : let $m_1, m_2 \in M$ $m_1 \sim m_2$ iff $m_1 - m_2 \in M'$. This is an equivalent relation on M and

$$\begin{split} & \mathcal{M}/\mathcal{M} := \left\{ \mathbb{E}m \right\}: \text{ equivalent classes under "~"} \right\} \\ & \mathcal{M}/\mathcal{M} := \left\{ \mathbb{E}m \right\}: \text{ a quivalent classes under "~"} \right\} \\ & \mathcal{M}/\mathcal{M} := \mathbb{E}m = \mathbb{E}m$$

Proposition: Let M be a R-module. Suppose that M'SM
is a R-Bubmodule such that both M and M/M'
are No etherian. M is Noetharian.
Lemma: Let
$$M_1 \subseteq M_2$$
 be R-submodules of M.
Suppose that $M_1 \cap M' = M_2 \cap M'$ and $T_{M'}(M_1) = T_{M'}(M_2)$
Then $M_1 = M_2$
Proof: (Only need to obvu $M_1 \ge M_2$). Take $m_2 \in M_2$.
Then $T_1(M_1) = T_1(M_2) \Longrightarrow$ on find $m_1 \in M$ such that
 $m_1 - m_2 \in M'$
 $M_1 \le M_2 \Longrightarrow m_1 - m_2 \in M_2 \Longrightarrow m_1 - m_2 \in M' \cap M_2$
 $M' \cap M_2 \Longrightarrow m_1 - m_2 \in M_1 \Longrightarrow m_2 \in M, \Pi$
Proof of Prop: Let: $M_1 \le M_2 \le M_3 \subseteq M_4 \le \dots - ke$
an ascending chain of submodules.
Then we have:
1, $M_1 \cap M' \le M_2 \cap M' \le M_3 \cap M' \le \dots$
is ascending chain of submodules in M'
 M' Neotherion, on find R sit.

•