Definition: An integral domain R is a Dedekirol domain if
(I) R is a Noetherian ring
(2) R is an integrally closed
(3) Every nonzero prime ideal is maximal
Question: may do we study Dedekird domain?
Ans: We know Z : ED
$$\Rightarrow$$
 PID \Rightarrow UFD
However, for a ring of integra Θ_F , it is not necessarily
a UFD!
(an show: Θ Θ_F are always Dedekird domains
(2) In a Dedekird domain, the elements
are not necessarily factored, but
the ideals will always factor.
Let F be a number field. Then $\dim_{\Theta} F = EF: \Theta$?.
Let $x \in F$, and we defire a linear operator
 T_x : $F \rightarrow F$
 $y \mapsto xy$.
Set: $Tr_{F/\Theta}(x) = tr(T_x)$ $N_{F/\Theta}(x) = det(T_x)$

Notice that we are viewing F as a vector space . Tx corresponds to NXN matrices (n= [F: R]) \rightarrow Tr_{F/W} (x), $N_{F/W}$ (x) $\in \mathbb{Q}$, that is, $T_{rF/Q}$, $N_{F/Q}$: $F \longrightarrow Q$. Moreover: $\operatorname{Tr}_{F/Q}$, $N_{F/Q}$: $\Theta_{F} \rightarrow \mathbb{Z}$. Definition: Let V be a vector space over some field F. A pairing is a function : (,) : $V \times V \rightarrow F$. A <u>bilimar form</u> B is a pairing B: V:x V -> F s.t. (1, $B(av_1 + bv_3, v_3) = AB(v_1, v_3) + bB(v_3, v_3)$ $B(v_1, av_2 + bv_3) = a B(v_1, v_2) + b B(v_1, v_3).$ (2) for a, b \in F and Vi, Vz, Vz & V. a bilinear form B: VXV > F. and fix VEV. Civen We obtain a linear function $B_v: V \rightarrow F$ $Hom (V, F)^{\sim} \qquad w \longmapsto B(v, w)$ Definition: A bilinear form B: VXV -> F is non degenerate $if \quad \beta_{v} = 0 \implies v = 0.$

Exercise: Let B: Vx V -> F be a non degenorate bilinear form Then for any basis [V1, ... Vn] of V, we can find onother basis $\{V_1, \dots, V_n^*\}$ sit. $B(v_i, v_j^{\star}) = \delta_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{othenise.} \end{cases}$ Fart: Let F be a number field. Then: $(,): F \times F \to Q$ $(x, y) \mapsto \operatorname{Tr}_{F/p}(xy)$ is a non degenerate bilinear form. Theorem: Let F be a number field. Then OF is a Dedahird damain. Recall there are 3 conditions for a Dedekind domain. We will prove them in the following propositions. Proposition: Let F be a number field. Then OF is a No etherian ring. Proof; il, We an find a finitely generated Z-module M sit. Of is a Z-submodule of M (2) Use (1) to prove the proposition.

(1) F is a number field. F= spon
$$\alpha$$
 [$\alpha_1, \dots, \alpha_n$]
with n= [F: ω].
Recall, when showing Frac(O_F) = F, we can find $d \in \mathbb{Z}$ set
 $d \alpha_i \in O_F$
Notice F = span ω_i [$d \alpha_1, \dots, d \alpha_n$]
Therefore, we can find $\beta_1, \dots, \beta_n \in O_F$
set. β_1, \dots, β_n is a basis for F/Ω .
By the fact, we can find $\beta_1^* \dots \beta_n^*$, a basis of F,
 $Tr(\beta_i \beta_j^*) = \delta_i j$
Claim: $O_F \subseteq M = spon_{\mathbb{Z}}(\beta_i^*, \dots, \beta_n^*)$
Let $\beta \in O_F$, sim $\beta_i^*, \dots, \beta_n^*$ is a basis,
 $\beta = \sum_{j=1}^{n} \alpha_j \beta_j^* \quad \alpha_j \in \Omega$.
It suffices to show: $\alpha_j \in \mathbb{Z}$.
 $Tr_{F/\Omega}(\beta_i \beta) = T_{F/\Omega}(\beta_i \beta_j^*) = \alpha_i$

Let
$$d \in \Theta_{F}$$
 and $\overline{\alpha} \in \Theta_{F/p}$
 $\alpha \in \Theta_{F} \Rightarrow \alpha^{n} + a_{1}\alpha^{n+1} + a_{2}\alpha^{n+2} + \cdots a_{n} = 0$ at $\in \mathbb{Z}$.
mod $p \Rightarrow \overline{\alpha}^{n} + \overline{a_{1}} \overline{\alpha}^{n+1} + \overline{a_{2}} \overline{\alpha}^{n+2} + \cdots \overline{a_{n}} = 0$ $\overline{a_{1}} \in \mathbb{Z}_{(p)}^{p}$
 $\Rightarrow \overline{\alpha}$ is an algebraic number in $\overline{\mathbb{Z}_{(p)}^{p}$
This means, for any $\overline{\alpha} \in \Theta_{F/p}$, $\overline{\alpha}$ is algebraic over
 a fixeld $\overline{\mathbb{Z}_{(p)}^{p}} \Rightarrow \overline{\mathbb{Q}_{F/p}}$ is a field $\Rightarrow \overline{p}$ is maximal \overline{p}
Exercise: Let F be a field, R on integral domain and
 $F \subseteq R$. Suppose that for any $\alpha \in R$, α is
algebraic over F , that is, can find $f(\alpha) \in F(\overline{x})$
 st . $f(\alpha) = 0$
Then R is a field.