Exercise: Let B: Vx V -> F be a non degenorate bilinear form Therefor any basis [V1, ... Vn] of V, we can find another basis (VI, ... Vn) sit. $B(v_i, v_j^{\star}) = \delta_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{othen ise.} \end{cases}$ Fart: Let F be a number field. Then: $(,): F \times F \rightarrow Q$ $(x, y) \mapsto \operatorname{Tr}_{F/p}(xy)$ is a non degenerate bilinear form. Theorem: Let F be a number field. Then OF is a Dedahird damain. Recall there are 3 conditions for a Dedekind domain. We will prove them in the following propositions. Proposition: Let F be a number field. Then OF is a No etherian ring. Proof; il, We an find a finitely generated Z-module M sit. Of is a Z-submodule of M (2) Use (1) to prove the proposition.

(1) F is a number field. F= spon
$$\alpha$$
 [$\alpha_1, \dots, \alpha_n$]
with n= [F: ω].
Recall, when showing Frac(O_F) = F, we can find $d \in \mathbb{Z}$ set
 $d \alpha_i \in O_F$
Notice F = span ω_i [$d \alpha_1, \dots, d \alpha_n$]
Therefore, we can find $\beta_1, \dots, \beta_n \in O_F$
set. β_1, \dots, β_n is a basis for F/Ω .
By the fact, we can find $\beta_1^* \dots \beta_n^*$, a basis of F,
 $Tr(\beta_i \beta_j^*) = \delta_{ij}$
Claim: $O_F \subseteq M = spon_{\mathbb{Z}}(\beta_i^*, \dots, \beta_n^*)$
Let $\beta \in O_F$, sim $\beta_i^*, \dots, \beta_n^*$ is a basis,
 $\beta = \sum_{j=1}^{n} \alpha_j \beta_j^* \quad \alpha_j \in \Omega$.
It suffices to show: $\alpha_j \in \mathbb{Z}$.
 $Tr_{F/\Omega}(\beta_i \beta) = T_{F/\Omega}(\beta_i \beta_j^*) = \alpha_i$

Let
$$\alpha \in \Theta_{F}$$
 and $\overline{\alpha} \in \Theta_{F}/\rho$
 $\alpha \in \Theta_{F} \Rightarrow \alpha^{n} + \alpha_{1}\alpha^{n+1} + \alpha_{2}\alpha^{n+1} + \cdots + \alpha_{n} = 0$ a) $\in \mathbb{Z}$.
 $\mod p \Rightarrow \overline{\alpha}^{n} + \overline{\alpha}_{1} \overline{\alpha}^{n+1} + \overline{\alpha}_{2} \overline{\alpha}^{n+1} + \cdots + \overline{\alpha}_{n} = 0$ $\overline{\alpha}_{1} \in \mathbb{Z}/\rho$
 $\implies \overline{\alpha}$ is an algebraic number in \mathbb{Z}/ρ
This means, for any $\overline{\alpha} \in \Theta_{F}/\rho$, $\overline{\alpha}$ is algebraic over
 α field $\mathbb{Z}/(\rho) \Rightarrow \Theta_{F}/\rho$ is a field $\Rightarrow \overline{\rho}$ is maximal
Lemman: Let F be a field, R on integral domain and
 $F \subseteq R$. Suppose that for any $\alpha \in R$, α is
algebraic over F , that is, can find $f(n) \in F(X)$
 st . $f(\alpha) = 0$
Then R is a field.
Proof: It suffices to observe for any $\Phi_{A} \in A$, $\alpha^{-1} \in A$.
Then $A \supseteq F[\alpha] = F(\alpha)$
 α is algebraic over F .
Then fore $\alpha^{-1} \in A$.
 T

Let R be a ring let
$$a_1, a_2$$
 be two ideals of R.
Then we define:
 $a_1 \cdot a_2 = \int \sum a_i b_i : a_i \in a_1, b_i \in a_2$
This is an ideal of R.
Check: (1) $a_1 \cdot a_2 = a_2 \cdot a_1$
(2) $a_1 \cdot (a_2 \cdot a_3) = (a_1 \cdot a_1) \cdot a_3$.
(3) $a \cdot R = R \cdot a = a$.
Theorem: Let R be a Dedekind domain. Then for
any ideal $a \leq R$. a can be unitten as the product
of prime ideals, that is,
 $a = P_1 P_2 \cdots P_n$ Fi prime ideals.
This decomposition is unique up to permutation.
Remark: This will imply:
 $a = P_1^{r_1} \cdots P_s^{r_s}$ Fi abotiant prime ideal
Fi and ri are uniquely determined.

Definition: A fractional ideal of F is a finitely generated

$$\Theta_{\rm F}$$
 - module.
Denote by I(F) the set of all fractional ideals.
Example: For $0 \neq a \in F$, we can define a fractional ideal:
(a): = { ra: r $\in \Theta_{\rm F}$]
Such fractional ideals will be called fractional principal ideals
Denote by P(F) the set of fractional principal ideals
Then for M, N $\in I(F)$, we can also define
 $M \cdot N := {\Sigma mi \cdot ni : mi \in M, ni \in N} \in I(F)$
Lemma: Let $M \in I(F)$, a fractional ideal. Then
we can find $d \in \Theta_{\rm F}$ set. dM is an ideal of $\Theta_{\rm F}$.
Proof: $M \in I(F) := M$ is finitely generated by X_{i} . X_{i}
 $M \in O_{\rm F}$.

Therefore
$$dM \leq OF$$

 M is a O_{F} -module $\Rightarrow dM$ is an ideal of O_{F} .
Let P be a prime ideal. We define:
 $P^{T} = \{ x \in F : xP \subseteq \Theta_{F} \} \in I(F).$
Lemma: $P \not\subseteq P \cdot P^{T} \subseteq \Theta_{F}$. (This implies: $P \cdot P^{T} = \Theta_{F}$)
Proof: O (Show $\Theta_{F} \not\subseteq P^{T}$)
We have $\Theta_{F} \subseteq P^{T}$ as $\Theta_{F} \cdot P \subseteq P \cdot \subseteq \Theta_{F}$.
Take $a \in P$. Then $P \supseteq (a) = P_{1} \cdots Pr$.
Claim: by arranging $P_{1}, \cdots Pr$, we can assure that
 $P_{1} \subseteq P \cdot \Rightarrow P_{1} = P$ sime Θ_{F} is a Dedetive dowin
(Other is, we can find $a \ge P_{1} - P$.
Then $a_{1} \cdots a_{T} \in P$ A controduction)
 $(a) \subseteq P \cdot P_{2} \cdots Pr \subseteq P_{2} \cdots Pr$.
Moreover, by the unique factorization,
 $(a) \ncong P_{2} \cdots Pr - (a) \Rightarrow b \oiint a \cdot \Theta_{F}.$
that is: $a^{T}b \And O_{F}$.

However,
$$a^{+}b \not \vdash \subseteq a^{+} \not \vdash_{i} \cdots \not \vdash_{r} \subseteq a^{+}(a) \le \partial_{f}$$

 $\Rightarrow a^{+}b \in \not \vdash_{i}^{+}$
 $\textcircledightharpoints that \not \vdash_{i} = \not \vdash_{i}^{-1} \cdot \not \vdash_{i}$
Take $x \in \not \vdash_{i}^{+}$ $\not \vdash_{i}$'s finitely generated by $x_{i} \cdots x_{n}$
Then $x (x_{i}, \cdots, x_{n}) = (x_{i}, \cdots, x_{n}) \cdot M$
with M being a n x n matrices with coefficients
in ∂_{f} .
Then taking $f(x) = det(I_{n} \cdot X - M) \quad f(x) = 0$.
This means: x is integral over ∂_{f} .
 ∂_{f} integrably closed $\Rightarrow \quad x \in \partial_{f} \Rightarrow \not \vdash_{i}^{-1} \subseteq \partial_{f}$.
A contradiction!
 p_{i} possition; $u_{i}(I(F), \cdot)$ is a abelian group.
 z_{i} $p(F)$ is a subgroup $ef = I(F)$.
Proof: Check: u_{i} $M \cdot N = N \cdot M$
 $(z_{i}, M_{i} \cdot M_{i}) = (M_{i} \cdot M_{2}) \cdot M_{3}$
 (3) $M \cdot \partial_{f} = \partial_{f} \cdot M = M$.
Therefore, it suffices to find M^{-1} for $M \in I(F)$

Claim: $M^{-1} = \{ x \in F : x M \subseteq D_F \}$ O Let P be a prime ideal of O_F . Then $P \in I(F)$. By definition: $P \cdot P^{-1} \subseteq O_{F}$. Lemma: P & P.P. (Prove later). Sime Of is a Dedekind domain and P prime => P is nox! This will force $P \cdot P^{-1} = \Theta_{F}$ a Let a be an ideal. Then $a = P_1 \cdots P_n$ Then $\mathbf{a} \cdot (\mathbf{p}_1^{-1} \cdots \mathbf{p}_n^{-1}) = \mathbf{O}_{\mathbf{F}}$. Next, we show: $a^{-1} = P_1^{-1} - P_n^{-1}$ By the definition of 2t, P1 - Pn 52 Then take $x \in 2^{-1}$, $x a \in \Theta_F$ $x a \cdot p_1^{-1} - p_n^{-1} \leq p_1^{-1} - p_n^{-1}$ Sime $\lambda \cdot p_1^{-1} \cdots p_n^{-1} = D_F$, take $1 \in 2p_1^{-1} \cdots p_n^{-1}$ $\Rightarrow \chi. 1 \in \beta_1^{\mathcal{A}} - \beta_n^{\mathcal{A}}$ 3. Let be a fractional ideal. Then we can find ce OF s.t. c.MS OF. and c.M is an ideal of OF. $(c \cdot M) \cdot (c \cdot M)^{-1} = O_{F.}$

We can show:
$$(c \cdot M)^{+} = c^{-1} M^{+}$$

This implies: $M \cdot M^{-1} = \Theta_{F}$.
(2) This is easy since $(c)^{+} = (c^{-1})$.
Definition: Let F be a number field. The class group
 $H(F) := I(F) / P(F)$.
Theorem: $H(F)$ is a finite abolian group.
Set: $h(F) := \# H(F)$, the class number.