Problem Set 5

October 7, 2024

Problem 1. Let p be a prime number, and let $ax-b \equiv 0 \pmod{p}$ be a linear congruent equation with $a \not\equiv 0 \pmod{p}$. Prove that the linear congruent equation has exactly one solution.

Hint: the existence of the solution is easy. To show the uniqueness of the solution, you need to show: suppose that $ax_1-b \equiv 0 \pmod{p}$ and $ax_2-b \equiv 0 \pmod{p}$, then $x_1 \equiv x_2 \pmod{p}$.

Problem 2. Solve the congruent equation

 $x^{39} \equiv 3 \pmod{13}.$