For example:

$$\sqrt{1^{2}+2^{2}+3^{2}+4^{2}} = 1+4+9+16 = 30$$

$$\frac{2(4)^{3}+3(4)^{2}+4}{6} = \frac{128+48+4}{6} = \frac{180}{6} = 30$$

$$\sqrt{4} = 1^{2} + 1^{2} + 1^{2} + 1^{2}$$

Induction method:
Step I: (Initialization) Check the initial Gase

$$N=1$$
.
Step II: (Induction step) Assume that we
have already completed the poof for N .
(called induction hypothesis), prove the
statement for $N+1$.
Why this methods work?
Reason: By step I, $N=1$ V
by step II, $N=2$ V
by step II, $N=3$ V
Domino effect]
i

Example: Use induction to show:

$$1^{2}+2^{2}+\cdots n^{2} = \frac{2n^{3}+3n+n}{6} \quad \text{for all } n$$
Proof: We write: for all n
 $P(n): 1^{2}+2^{2}+\cdots n^{2} = \frac{2n^{3}+3n+n}{6}$
(step I: show $P(1)$ is true
 $Step I: assume that $P(n)$ is true
 $Show P(n+1)$ is true
 $Step I: P(1) 1^{2} = 1$
 $\frac{2(1)^{3}+3(1)+1}{6} = \frac{6}{6} = 1$
 $Step I: Assume P(n)$ is true, that is
 $1^{2}+2^{2}+\cdots n^{2} = \frac{2n^{3}+3n^{2}+n}{6}$$

$$\begin{pmatrix} p(n+1) : 1^{2} + \cdots n^{2} + (n+1)^{2} = \frac{2(n+1)^{3} + 3(n+1)^{2} + (n+1)}{6} \\ \frac{1^{2} + \cdots n^{2} + (n+1)^{2}}{6} \\ \frac{by \ induction}{6} \frac{2n^{3} + 3n^{2} + n}{6} + (n+1)^{2} \\ = \frac{2n^{3} + 3n^{2} + n}{6} + n^{2} + 2n + 1^{2} \\ = \frac{2n^{3} + 3n^{2} + n}{6} + 6n^{2} + 12n + 6 \\ \frac{2n^{3} + 9n^{2} + 13n + 6}{6} \\ \frac{2(n+1)^{3} + 3(n+1)^{2} + (n+1)}{6} = \frac{2(n^{3} + 3n^{2} + 3n + 1) + 3(n^{2} + 2n + 1)}{6} \\ = \frac{2n^{3} + 9n^{2} + 13n + 6}{6}$$

Therefore, by induction, we show
$$P(n)$$
 is
true for all n , that is,
for all n , $1^2+2^2+\cdots n^2 = \frac{2n^3+3n^2+4}{6}$ \square

•