Example: (1)
$$\binom{4}{2} = \frac{4!}{(2!)(2!)} = \frac{24}{(2)(2)} = 6$$

(2) $\binom{5}{2} = \frac{5!}{(2!)(3!)} = \frac{12}{(2)(6)} = 10$
(3) $\binom{n}{0} = \frac{n!}{(0!)(n!)} = \frac{n!}{(1)(n!)} = \frac{n!}{n!} = 1$
(4) $\binom{n}{n} = \frac{n!}{(n!)(0!)} = \frac{n!}{(n!)(1)} = \frac{n!}{n!} = 1$.
Prof of theorem:
We first prove \textcircled{D} : $\frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$
 $\frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n(n-1)\cdots(n-k+1)(n-k)(n-k-1)\cdots(k!)}{k! \cdots (n-k)(n-k-1)\cdots(2!)(1)}$
 $= \frac{n!}{k!(n-k)!}$
Prof of \textcircled{D} : before the prof, we can look at an example:
we wont to calculate $\binom{4}{1}$
 $(4) = coefficient of A^2B^3$ in $(A+B)^4$.

Step I': Pick up A in 3rd box
Step I': Pick up A in 1st box.
They are different when we are picking up A
but they give the same result for where we picked up A.
Indeed, in our process, the "order" of picking up A
does not natter. That's why we over courted.
Therefore, we need to divide the total ways by
the order.
Sime we are picking up 2 A, the number of oxder
is
$$2! = 2$$
.
This implies: $\binom{4}{2} = \frac{(4)(3)}{2!}$
The proof of general case is similar:
 $\binom{n}{k} = \text{coefficient of A^{n-k}B^k}$ in $(AtB)^n$
 $\boxed{A \cdot B}$ $\boxed{A \cdot B}$ $\boxed{A \cdot B}$ $\boxed{A \cdot B}$
 n boxes.
Pick up k "B"

Total number number is =
$$n(n-1)(n-1) \cdots (n-k+1)$$
.
We need to divide by the order. Since we are picking
up k "B", the number of order is A!
Therefore $\binom{n}{k} = \frac{n(n-1)(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$
Remark: The explicit formula also gives an proof
for $\binom{n}{k} = \binom{n}{n-k}$.