(Chopter 5.
$$P30-34$$
)
Lex m.n be two integer with $m \neq 0$.
Definition: We say that $m \underline{divides} \ n$ if we can find
an integer k such that $n=mk$.
Notation: $m \mid n$ read "m divides n''
If we can not find such an integer, we write $m \neq n$.
Example: $3 \mid 6$ sime $6=(3)(2)$
 $4 \mid 12$ sime $12=(4)(3)$
 $5 \nmid 13$.
Definition: A number that divides n is called a
divisor of n .
Example: $3 \mid 6$ and hence 3 is a divisor of 6 .
 $4 \mid 12$ and hence 4 is a divisor of 12 .
Example: List all the (privitive) divisors for 6 .
(Observation; if n is a divisor of 6 , than $-o < n \le 6$)

6.

Example:
$$m = 12$$
, $n = 18$
We can show: $3|12$ and $3|18$
This implies: 3 is a common divisor for μ and 18.
Definition: The greatest common divisor of m and n is the
largest number that divides both m and n .
Notation: $gcd(m, n)$
Example: $gcd(4, 6) = 2$.
 $gcd(12, 18) = 6$.
In the left of the class, we instroduce an effective
way to calculate $gcd(m, n)$ called
Enclidean algorithm.
Define the general method, we can book at one example:
Find $gcd(132, 36)$.
Step 1: divide 132 by 36
 $132 = 3 \cdot 36 + 24$

Step II: divide 36 by 24

$$36 = 1 \cdot 24 + 12$$

Step III: divide 24 by 12
 $24 = 2 \cdot 12 + 0$
Step IV: when we find a "0," the previous
remainder is the gcd.
In our case, this is 12
Therefore gcd (132,36) = 12.
The general method:
Theorem 5.1 (Euclidean Abgorithm) Let a, b be two
integens. We compute the successive quotients and
remainders:
 $a = q_1b + r_1$
 $b = q_2r_1 + r_2$
 $r_1 = q_3r_2 + r_3$
 $r_1 = q_n r_{n+} + r_n$

$$\Gamma_{n+} = q_{n+r} \Gamma_n + 0.$$

Then $gcd(a,b) = \Gamma_n.$
Remark: Why this algorithm will end in finite steps?
Ans: We can show: (we can assume $a > b$)
 $a > b > \Gamma_1 > \Gamma_3 > \cdots \Gamma_n$
After finitely many steps, we will reach $O.$
This idea is called "infinite descent" and
we will use this later.