(Chapter 7)
\nIn this lecture, we study the decomposition
\nof integers, which is known as the
\nfundamental theorem of arithmetic.
\nBefore the proof, we need several lemmas:
\nLemma 1: Let p be a prime and n an
\narbitrary integer. Then either
\n
$$
gcd(p,n)=1
$$
 or $P\mid n$.
\nProof: We know that
\n $gcd(p,n) \mid P$.
\nSince p is a prime, p has only 2 divisors
\n 1 and p.
\nIf $gcd(p,n)=1$, this is the first case.

If
$$
gcd(p, n)=p
$$
, then $p|n$. This
\nis the second case. In.
\nRenork: If we further assume that n is a prime, then either $(p, n)=1$
\nor $p = n$.

\nLemma 1. (7.1) Let p be a prime number.
\nSuppose that $p|(ab)$ Then
\neither $p|a$ or $p|b$.

\nProof: Assume that $p|(ab)$

\nIf $p|a$, then the pmf is finished.

\nIf $p|a$, then by Lemma 1. $gcd(p,a)=1$.

\nThe by the theorem is last lecture, we can find r , s such that

$$
rp + SA = 1. (= gcd(p,a))
$$
\nMultiply the equation by b,

\n
$$
rpb + Sab = b
$$
\n
$$
p \mid p \quad p \mid ab \Rightarrow p \mid (rpb + sab) = b
$$
\n
$$
rlevelve, if p+a, then p \mid b
$$
\nTheorem (7.2. Prime Diasibility Property)

\n
$$
Let p be a prime. Suppose that
$$
\n
$$
p \mid (a_1 a_2 a_3 ... a_r)
$$
\n
$$
Provf: We can write
$$
\n
$$
a_1 a_2 ... a_r = a_1 (a_3 ... a_r)
$$
\n
$$
p \mid (a_1 a_2 a_3 ... a_r)
$$
\n
$$
p \mid (a_2 ... a_r) \implies p \mid a_1
$$
\nor $p \mid (a_2 ... a_r)$ \n
$$
p \mid (a_1 a_2 ... a_r) \implies p \mid a_1
$$
\nor $p \mid (a_2 ... a_r)$

If
$$
P|a_1
$$
, $\sqrt{a_1}$, $P|a_2$, α_r .
\nAgain, we write $a_2 \cdot a_r = a_2(a_3 \cdot \cdot \cdot a_r)$
\nWe can continue this process and
\nwe can show P divides at least one
\nof a_1 , \cdots a_r \cdots \cdots
\nof a_1 , \cdots a_r \cdots
\nTo now (7.3), the fundamental theorem of arbitrary)
\nfor away integer $n \ge 2$, it is from the function
\ninto a product of primes:
\n $n = P_1 P_2 \cdots P_r$
\n \therefore exactly one way (up to rearrage next).

Remark: 15 If n is a prime

\n
$$
n = n.
$$
\n(2) We don't require that P_i be obtained.

\nIndeed: $|2 = 2 \cdot 2 \cdot 3$

\n(3) This decomposition/factor is unique if we don't be about the order.

\n
$$
|2 = 2 \cdot 2 \cdot 3
$$
\n
$$
= 2 \cdot 3 \cdot 2
$$
\n
$$
= 3 \cdot 2 \cdot 2
$$
\n(4) To prove the theorem, we need to show that of the form.

\n
$$
x^2 + y^2 = 2 \cdot 3
$$
\n
$$
= 3 \cdot 2 \cdot 2
$$
\n(4) To prove the theorem, we need to show that of the form.

\n
$$
x^2 + y^2 = 3
$$
\n
$$
y^2 = 3 \cdot 2
$$
\n
$$
y^2 = 3 \cdot 2
$$
\n(4) To prove the theorem, we need to show that of the form.

\n
$$
x^2 + y^2 = 3
$$
\n
$$
y^2 = 3 \cdot 2
$$
\n
$$
y^2 = 3 \cdot 2
$$
\n
$$
y^2 = 3 \cdot 2
$$
\n(4) To prove the theorem, we need to use the form.

\n
$$
y^2 = 3 \cdot 2
$$
\n
$$
y^2 = 3 \cdot 2
$$
\n
$$
y^2 = 3 \cdot 2
$$
\n(4) To prove the theorem, we need to use the form.

Proof: We proof by the (complete) induction.

\n
$$
p(n)
$$
: n can be written as the product of primes

Step 1:
$$
P(2)
$$
: This is obvious sine
 $2=2$ (2 is prime)

Step II: Suppose that this is true for
\n
$$
P(2)
$$
, $P(3)$,
\n $P(4)$
\nWe look at $P(n+1)$.
\nWe consider two cases.
\n 0 1f n+1 is a prime, then the function is
\n $n+1 = n+1$.

ˊ

 \bigcirc If nt1 is not a prime, then we can unite $n+1 = a b$. Notile: $2 \le a \le n \Rightarrow P(a)$ is true $2 \le b \le b \implies P(b)$ is true. Therefore: $a = p_1 \cdots p_r$ $b = 9 - 9s$ $n+1 = \alpha \cdot b = p_1 - p_1 q_1 - q_5$ This is a product σ princes. By induction, every integer $n \geqslant 2$ can be unitten as the product of primes. Next, we show there is only one way! Suppose that: (we can assure $r \leq S$) $n = P_1 P_2 \cdots P_r$

$$
= q_1 q_2 \cdots q_5
$$
\nWe need to show:
$$
\Gamma = S
$$
\nAfter rearrangement, we can show\n
$$
P_1 = q_1 \cdot p_2 = q_2, \quad P_3 = q_3 \cdots p_r = q_r
$$
\n
$$
\Gamma = q_1 \cdot q_5
$$
\nThen
$$
p_1
$$
 divides one of
$$
q_1, \cdots, q_s
$$
\nAfter rearrators, we assume
$$
p_1 | q_1
$$
\n
$$
p_1 q_1
$$
 are both prime
$$
p_1 | q_1 \Rightarrow p_1 = q_1
$$
\n
$$
\Gamma = P_1 P_2 \cdots P_r
$$
\n
$$
= q_1 q_2 \cdots q_s = p_1 q_2 \cdots q_s
$$

Therefore
$$
r = S
$$
. \Box

Here is another way to demonstrate the uniqueness we collect all the sane primes together and write it in the power form Example: $100 = 2.5.2.5$ $= 2^2 \cdot 5^2$ $162 = 2.3.3.3.3.3$ $= 2 \cdot 3^{4}$.

Theorem: For any integer $n \geq 2$, n Cen be fattored as $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$

with
$$
p_1, \ldots, p_r
$$
 being distinct
\nThis factorization is unique.
\nSome applications
\nJ. The factorization of numbers give another
\nway to find gcd. This may not
\n $b = \text{efficient} \text{ but useful.}$
\nExample: find gcd (700, 360)
\n $700 = 2^3 \cdot 5^2 \cdot 7 = 2^3 \cdot 3^0 \cdot 5^2 \cdot 7^1$
\n $360 = 2^3 \cdot 3^2 \cdot 5 = 2^3 \cdot 3^3 \cdot 5^1 \cdot 7^1$
\nFind the smaller power
\nin each prime
\n $3^2 \cdot 3^2 \cdot 5 = 2^3 \cdot 3^2 \cdot 5^1 \cdot 7^0$
\n $3^2 \cdot 15 = 2^3 \cdot 3^2 \cdot 5^1 \cdot 7^0$

$$
=2^2 \cdot 5^1 = 20
$$

Observation: Let m, n be two integers. $gcd(m, n) = 1$ is equivalent to m, n have no common primes. I A nesful lemma Lemma Let min be integers smh that $gcd(m, n)$ = 1. Then for any integers $\alpha, \beta, \quad \text{gcd}(m^{\alpha}, n^{\beta}) = 1.$ $Proof: m = P_1^{\alpha_1} \cdots P_r^{\alpha_r}$ $n = 96^{\beta_1}$... 96^{β_5} $gcd(m, n) = 1$. \Rightarrow $\{p_1, \cdots, p_r\} \cap \{q_1, \cdots, q_s\} = \phi$. α ... β_{r} $m^2 = r_1$ $n\beta = 91^{\beta_1\beta}$ - $95^{\beta_5\beta}$ m^{ol}, n^β have no common primes. and hence $gcd(m^{\alpha}, n^{\beta}) = 1$ \Box

In Proposition: Let n be an integer and p
\na prime. Then we can find an integer
\n
$$
\alpha
$$
 and on integer m is in the
\n $n = p^{\alpha}$ m
\nand gcd(p,m) = 1.
\nProof: When $p \nmid n$, $\alpha = 0$, $m = n$.
\nWhen $p \mid n$, n the function n is a
\n $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$
\nOne of p_1, \cdots, p_r must be p_j say p_j ,
\nthen $\alpha = \alpha_1$ $m = p_2^{\alpha_2} \cdots p_r^{\alpha_r}$

We can show:
\n
$$
gcd(p,m) = gcd(P, P_2^{\alpha_1} \cdots P_r^{\alpha_r}) = 1.7
$$

\nDefinition: Let n be un integer add p a
\n g_{min} . Then we can find $d \ge 0$ and m
\n g_{min} that $n = p^{\alpha}m$ with $(p.m) = 1$.
\nWe write: $ord_p(n) = \alpha$.
\nWe also write $p^{\alpha} || n$
\n $read : p^{\alpha}$ exactly divides n.
\nExample: $48 = 2^4 \cdot 3$
\n $\Rightarrow ord_p(48) = 4$
\n $2^4 || 48$.