If
$$g(d(p, n)=p$$
, then $p|n$. This
is the second case. II.
Remark: If we further assure that n is
a prime, then either $(p, n)=1$
or $p=n$.
Lemma 2 (7.1) Let p be a prime number.
Suppose that $p|(ab)$. Then
either $p|a$ or $p|b$.
Proof: Assure that $p|(ab)$
If $p|a$, then the proof is finished.
If $p|a$, then by Lemma 1, $gd(p, a)=1$.
Then by the theorem is last lecture,
we can find r , S such that

$$rp + Sa = 1 \quad (= gcd(p,a))$$
Multiply the equation by b,

$$rpb + Sab = b.$$

$$P|P \quad P|ab \Rightarrow P|(rpb+sab) = b$$

$$Therefore, if P+a, then P|b$$

$$Theorem (7.2. Prime Divisibility Property)$$

$$Let p be a prime. Suppose that
$$P|(a, a, a_{3} \cdots a_{r})$$

$$Then p divides at least one of them.$$

$$Proof: We can write
$$a_{1}a_{2} \cdots a_{r} = a_{1}(a_{3} \cdots a_{r})$$

$$P|(a_{1}a_{3} \cdots a_{r}) = P|a_{1} \text{ or } P|(a_{2} \cdots a_{r})$$$$$$

If
$$P|A_1$$
,
If $P|A_1$, $P|A_2 \dots A_r$.
Again, we write $A_2 \dots A_r = A_2(A_3 \dots A_r)$
We can continue this process and
We can show P divides at least one
of $A_1, \dots A_r$ \square .
Theorem (7.3, the fundamental theorem of anithmetic)
For every integer $n \ge 2$, it can be fourtoned
into a product of primes:
 $n = P_1 P_2 \dots P_r$
in exactly one way (up to rearrangement).

Step I:
$$P(2)$$
; This is obvious since
 $2 = 2$ (2 is prime)

•

@ If n+1 is not a prime, then we con write n+1 = ab. Notice: $2 \le q \le n \implies P(a)$ is true $2 \le b \le b \Rightarrow P(b)$ is true. Therefore: Q= Pi. Pr $b = 9, \dots, 9s$ $n+1 = a \cdot b = P_1 - Pr \ Q_1 - Q_s$ This is a product of prines. By induction, every integer NZ2 can be written as the product of primes. Next, we show there is only one way: Suppose that: (we can assure $r \leq S$) $n = P_1 P_2 \cdots P_r$

$$= 9_{1}9_{2} \cdots 9_{s}.$$
We need to show: $\Gamma = S$

After rearrangement, we can show
$$P_{1} = 9_{1} , P_{2} = 9_{2}, P_{3} = 9_{3} \cdots Pr = 9r$$
Indeed: $P_{1} \mid n = 9_{1} \cdots 9_{s}$

Then P_{1} divides one of $9_{1}, \cdots 9_{s}$

After rearragment, we assure $P_{1} \mid 9_{1}$

 $P_{1}, 9_{1}$ are both prime $P_{1} \mid 9_{1} \Longrightarrow P_{1} = 9_{1}$

In this case.
$$n = P_{1}P_{2} \cdots P_{r}$$

$$= 9_{1}9_{2} \cdots 9_{s} = P_{1}9_{2} \cdots 9_{s}$$

Here is another way to demonstrate the uniqueness: ve collect all the same prines together and write it in the power form. Example: 100 = 2.5.2.5 $= 2^{2} \cdot 5^{2}$ $162 = 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ $= 2 \cdot 3^{+}$

Theorem: For any integer N=2, N Can be factored as: $N = P_1^{\alpha_1} P_2^{\alpha_2} \cdots P_r^{\alpha_r}$

$$=2^{2} \cdot 5^{1} = 20$$

Observation: Let m,n be two integers. gcd (m,n) = 1 is equivalent to m,n have no common primes. II. A vesful lemme. Lemma: Let m,n be integers such that gcd(m,n)=1. Then for any integers $\alpha, \beta, gcd(m^{\alpha}, n^{\beta}) = 1.$ Proof: $m = P_1^{\alpha_1} \cdots P_r^{\alpha_r}$ $n = q_1^{\beta_1} \cdots q_{\kappa}^{\beta_{s}}$ $gcd(m,n)=1. \Rightarrow \{P_1, \dots, P_r\} \cap \{\hat{q}_{1,j}, \hat{q}_{s}\} = \phi.$ $m^{\alpha} = P_1^{\alpha,\alpha} \cdots P_r^{\alpha,\alpha}$ $N^{\beta} = q_1^{\beta_1\beta} \cdots q_5^{\beta_5\beta}$ m^x, n^B have no common primes. and hence $gcd(m^{\alpha}, \Lambda^{\beta}) = 1$ 1

II. Proposition: Let n be an integer and p
a prime. Then we can find an integer

$$d \ge 0$$
 and an integer net such
that
 $n = \cdot p^{d} m$
and $gcd(p,m) = 1$.
Proof: When $p+n$, $d = 0$, $m=n$.
When $p+n$, by the footonization
 $n = p_{1}^{d_{1}} \cdots p_{r}^{d_{r}}$
One of $p_{1}, \cdots p_{r}^{d_{r}}$
then $d = d_{1} = m = p_{2}^{d_{3}} \cdots p_{r}^{d_{r}}$.

We can show:

$$gcd(p,m) = gcd(P, P_{2}^{d_{1}}...P_{r}^{d_{r}}) = 1. \square$$

Definition: Let n be an integer and p a
prime. Then we can find a zo and m
such that $n = p^{\alpha}m$ with $(Pm) = 1$.
We write: $ord_{p}(n) = \alpha$.
We also write $p^{\alpha} \parallel n$
read: p^{α} exactly divides n.
Example: $48 = 2^{4} \cdot 3$
 $= 0 \operatorname{ord}_{2}(48) = 4$
 $2^{4} \parallel 48$.