(Chapter 12
$$
P83 - 84
$$
)
\nObservation: Let $n \ge 2$ be an integer. Then we can always find
\na prime 9 such that $q|n$.
\nTwo cases: 11, 11 prime 9=n.
\nTwo cases: 11, 11 prime 9=n.
\nTheorem: There are infinitely many prime numbers.
\nEuchal's proof: (Proof by controduction.)
\nAssume that there are finitely among primes.
\nThen we can list all the primes P_1, P_2, \dots, P_n .
\nWe look at
\n $A = P_1 P_2 \cdots P_n + 1$.
\nLet q be a prime such that $q | A$.
\nThen q should be one of P_1, \dots, P_n . For example $q = P_1$
\nHowever, $q \circ d(P_1, A) = 1 = q \circ d(P_2, A)$ since
\n $A - (P_3 \cdot P_3 \cdots P_n) \cdot P_4 = 1$.
\nThis gives $0, q | A$. This can answer hyper.
\n $0, q \circ d(P_1, A) = 1$ or the some time.

This means: we get a contradiction:
This implies: our assumption is wrong !
Therefore, the one infinitely noong primes !
Euler's proof: He looked at

$$
\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots = \sum_{p \text{ prime}} \frac{1}{p}
$$
 infinite series.
He showed $\sum_{p \text{ prime}} \frac{1}{p} = \infty$
Thefore, the one infinitely many primes.