In this class, we continue to solve the congruent equations.

$$P(x) \equiv O \pmod{m}.$$
For congruent equations, we want to find all incongruent
solutions:
Definition: Let a, b be solutions fir the congruent equation:

$$P(x) \equiv 0.$$
They are

$$\frac{\cos gruent}{\cos gruent} \frac{\sin \pi}{\sin \pi} = 0 \pmod{m}$$
incongruent solutions if $a \equiv b \pmod{m}$
incongruent solutions if $a \equiv b \pmod{m}$
Example: $x^2 - 4x + 3 \equiv O \pmod{m}$
 $x = 1$ is a solution.

$$x = 3$$
 is a solution.
By the observation in last class, if $P(x) \equiv 0$ has a
solution, say $x \equiv a$, then we can find
 $0 \leq r \leq m-1$

R≈r(mod m). Then x=r is also a solution for P(x)=O. We prefer to use r as the solution for $\mathcal{V}(x) \equiv 0.$ We would write the solution as r(mod m) Example: $\chi^2 - 4\chi + 3 \equiv 0 \pmod{8}$ Solutions: $X \equiv 1 \pmod{8}$ $X \equiv 3 \pmod{8}$ Question: Do we have other (incongruent) solutions? Answer: Tes! $X \equiv 5 \pmod{8}$ $X \equiv 7 \pmod{8}$. Here is a vary to find all (incongruent) solutions: · List 0, 1, ~--, m-1 · Plug in $P(x) \equiv o \pmod{m}$ to check whether it is a solution.

Linear congruent Equations:
We consider:
$$ax \equiv b \pmod{m}$$

Observation: if x_0 is a solution, then
 $m \mid ax_0 = b$
In other words, we can find a number l such that
 $ax_0 = b = l \cdot m$
This becames $ax_0 - lm = b$
This means: $gcd(a, m) \mid b$.
Theorem: Let $ax + b \equiv 0 \pmod{m}$
Then it has no solution if $gcd(a,m) \neq b$.
If $gcd(a,m) \mid b$, we can find a solution as follows:
(1), Find r, s such that
 $ra + sm = gcd(a, m)$
 $a \cdot \frac{rb}{gcd(a,m)} + \frac{bs}{gcd(a,m)} \cdot m = b$

Then
$$a \cdot \frac{rb}{gcd(a,m)} \equiv b \pmod{m}$$

and $\chi = \frac{rb}{gcd(a,m)}$ is a solution.
(3) Find the number between 0 and m-1
which is congruent to $\frac{rb}{gcd(a,m)}$ and
this is the solution.
Note: this obses not give all the incorgruent
solutions for a linear congruent conduction.
To find all incongruent solutions for a
linear congruent equation, see Theorem 8.1
in the textbook.
Example: $7\chi \equiv 3 \pmod{15}$
solution: $gcd(7,15) = 1 \ 3 \Rightarrow 1t$ has a solution !
Step I: $-2 \cdot 7 + 15 = 1$
step II: $\frac{3}{gcd(7,15)} = \frac{3}{1} = 3$
 $3(-2 \cdot 7 + 15) = 3 \cdot 1$

$$7 \cdot (-6) + 45 = 3$$

$$7 \cdot (-6) - 3 = -45$$

$$= 7 \cdot (-6) = 3 \pmod{15}$$

$$= 7 - 6 \text{ is a solution}$$
Step II: $-6 = 9 \pmod{15}$
Therefore $9 \pmod{15}$ is a solution for
$$7x = 3 \pmod{15}.$$