Chapter 9 In this lecture, we prove the following theorem: Theorem 9.1 (Fermat's Little Theorem) Let p be a prime number, and let a be \int number with $a \not\equiv o \pmod{p}$. Then: \mathcal{U} $P - 1$ 1 modp Example: Take $p = 7$ and $a = 3$ $3^{7-1} = 3^{6} = 729$ $729 - 1 = 728 = 7.104$ \Rightarrow 3⁷⁻¹ = 1 (mod 7). We will give tuo proof for Fermat's little Theorem The 1st proof is based on the following observation: we again look at $p = 7$ and $a = 3$. We list all nonzero incongruent number for $p = 7$: (\star) 1, 2, 3, 4, 5, 6.

(Sometimes they are also called residue classes if we
write:

$$
1(mod 7)
$$
, $1(mod 7)$, $3(mod 7)$, $4(mod 7)$, $5(mod 7)$ (mod 7)
We multiply (*) by 3, and reduce modulo 7:

t.i.it tl iiiEanhofI

 $2, 3, 4, 5, 6$ appears exactly one time in row 2 (and row 4)

This means:
\n
$$
(3 \cdot 1)(3 \cdot 2)(3 \cdot 3)(3 \cdot 4)(3 \cdot 5)(3 \cdot 6) = (1)(2)(3)(4)(5)(6) \pmod{7}
$$

\n11
\n $3^{6} \cdot (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6) \equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \pmod{7}$
\n $3^{6} \cdot (6!) \equiv 6! \pmod{7}$

We can show: god $(6!$, $7) = 1$ We can cancel 6! on seach side and it becames: $3^{6} \equiv 1 \pmod{7}$. Vow we introduce several lemmes before the Ist proof. Lemma 1: If $AC \equiv b \in (mod m)$ and gcd $(c, m) = 1$, then $a \equiv b \pmod{m}$ proof Homework Lemma2 : Let p be a prime, then $gcd((P-1)! , p) = 1.$ Proof Suppose not Then we can find another prime y such that p' | gcd ($(p-1)!$, p $q \mid \rho \Rightarrow q = \rho$. Therefore $p | (p-1)$ Sime $p | (p-1) != 1 \cdot 2 \cdot 3 \cdot - (p-1)$

\n*p divides at least one of them.*
\nThis is impossible since 1,2,3,..p-1 < P
\n(1, p|n, then
$$
n > p
$$
)\n

\n\nI ammo 3: Let p be a prime number, and let a be a number satisfy\n \n- a number satisfy\n
	\n- a number of sides in the image.
	\n- b number of sides in the image.
	\n- c number of sides in the image.
	\n- d, 20, 30, ... (p-1) (mod p)
	\n- a number of sides in a different order.
	\n\n

\n\n*Proof:* The list of a, 2a, 3a, ... (p-1) a contains $\frac{p\cdot 1}{1}$ numbers and none of them are divisible by p.
\n*Common* every two numbers $\hat{j}a$, $\hat{k}a$ $(\hat{j}+\hat{k})$ in the list\n \n- over most important (1s) $\leq p\cdot 1$, 1 $\leq k \leq p\cdot 1$
\n
\n

Suppose not, then we can find
$$
\int a, ka
$$
 such that $p \int a-ba = (\int -k) a$
Then $p \cdot [(\int -k)$ or $p \cdot a$.
Then $p \cdot [(\int -k)$ or $p \cdot a$.
Then $\int a \cdot b = (1-k)$
However, we take $1 \cdot s \cdot s = p-1$
 $1 \cdot k \cdot s = p-1$
 $-(p-1) \cdot s \cdot 1 - k \cdot s = p-2$
Thus implies $j-k=0$ and $j=k$ A contradiction
Then $\int a$ find p and p and p are $(p-1)a$ (mod p)
the area $p-1$ distinct and zero values
mod p .
However, there are exactly $p-1$ distinct
non zero values mod p and p are $(p-1)(mod p)$
Therefore, the real graph is $(p-1)(mod p)$.
Therefore,

 ϵ