In this part, we will give a second proof for Fermat's
Little Theorem. (Chapter 38 P319-322)
Recall:
Theorem (Fernad's Little Theorem): Let p be a prime, and let
a be any number such that
$$a \neq 0 \pmod{p}$$
. Then:
 $a^{P-1} \equiv 1 \pmod{p}$.
To prove this, it suffices to show:
(*) $a^P \equiv a \pmod{p}$.
Remark: (1) Sime $a \neq 0 \pmod{p}$, we can cancel one a on
each side and the theorem is valid.
(2) (*) is true even if $a \equiv 0 \pmod{p}$.
Idea for the Ind proof:
(1) a special property for $\binom{P}{k}$
(2) induction.

Theorem (38.3 Binnniel Theorem mod p) Let p be a prime number
(a)
$$\binom{p}{k} \equiv 1 \pmod{p}$$
 if $k=0$ or $k=p$.
(b) $\binom{p}{k} \equiv 0 \pmod{p}$ if $1 \le k \le p-1$
(c) For any number A, B, we have:
 $(A+B)^{P} \equiv (A+B) \pmod{p}$.
Recall: we showed $p \mid \binom{p}{2}$ when $p > 2$.
This is a special case of (b).
Proof: (a) This is obvious since
 $\binom{p}{0} = \binom{p}{p} = 1$ $1 \equiv 1 \pmod{p}$.
(b) Assume that $1 \le k \le p-1$.
 $\binom{p}{k} = \frac{P(p-1) \cdots (p-k+1)}{k(k-1) \cdots 2 \cdot 1}$ this is a nuber!!!
Suppose that $P \upharpoonright \binom{p}{k}$, we have

$$P \mid 1 \cdot 2 \cdot 3 \cdots (k \cdot 1)$$
sine we have a p in the minorator
This is impossible sine $1, 2, 3, \because k \cdot 1 < p$.
Therefore $P \mid \begin{pmatrix} P \\ k \end{pmatrix}$ and $\begin{pmatrix} P \\ k \end{pmatrix} \equiv 0 \pmod{p}$
(C) By the definition of binomial numbers:
 $(A+B)^{P} = \begin{pmatrix} P \\ 0 \end{pmatrix} A^{P} + \begin{pmatrix} P \\ 1 \end{pmatrix} A^{P-1}B + \cdots \begin{pmatrix} P \\ k \end{pmatrix} A^{P+B} + \cdots \begin{pmatrix} P \\ p \end{pmatrix} A^{B} + \begin{pmatrix} P \\ p \end{pmatrix} B^{P}$
 $= A^{P} + \begin{pmatrix} P \\ 1 \end{pmatrix} A^{P-2}B + \cdots \begin{pmatrix} P \\ k \end{pmatrix} A^{P+B} + \cdots \begin{pmatrix} P \\ p \end{pmatrix} A^{B} + B^{P}$
 $\equiv A^{P} + 0 A^{P-1}B + \cdots \begin{pmatrix} P \\ k \end{pmatrix} A^{P+B} + \cdots \begin{pmatrix} P \\ p \end{pmatrix} A^{B} + B^{P}$
This gives: $(A+B)^{P} \equiv A^{P} + B^{P} \pmod{p}$. a.
Then we give the 2nd proof for Fermet's Little Theorem:
we know, we only need to show:
for any integer A , $A^{P} \equiv A (\operatorname{Find} P)$.
We prove this by induction:
 $P(A)$: for any integer A , $A^{P} \equiv A (\operatorname{Find} P)$.

Step I:
$$P(1)$$
 $1^{P} = 1 \equiv 1 \pmod{p}$
Step II: Suppose that $P(a)$ is true, that is,
 $a^{P} \equiv a \pmod{p}$.
 $P(a+1)$:
 $(a+1)^{P} \equiv a^{P} + 1^{P} \pmod{p}$ Theorem IC)
 $\equiv a + 1 \pmod{p}$ induction hypothesis.
Therefore, if $P(a)$ is true, than $P(a+1)$ is true.
By induction, we showed, fir any number A ,
 $a^{P} \equiv a \pmod{p}$.
 Π .

An application of Fermat's Little Theorem.
Example: Solve the angruent equation:

$$X^{86} \equiv 6 \pmod{7}$$
Solution: By Fermat's Little Theorem:

$$X^{6} \equiv 1 \pmod{7}$$
By Euclidean's algorithm, $86 = 14 \cdot 6 + 2$

$$X^{86} \equiv X^{6 \cdot 14} + 2 = (X^{6 \cdot 14}) (X^{2}) = (X^{6})^{14} \cdot (X^{2})$$

$$\equiv 1 \cdot X^{2} \pmod{7}$$
So it suffices to solve $X^{2} \equiv 6 \pmod{7}$

$$X = 1 \qquad X^{2} = 1 \pm 6 \pmod{7}$$

$$X = 2 \qquad X^{2} = 4 \pm 6 \pmod{7}$$

$$X = 3 \qquad X^{2} = 9 \pm 6 \pmod{7}$$

$$X = 4 \qquad X^{2} = 34 \pm 6 \pmod{7}$$

$$X = 6 \qquad X^{2} = 34 \pm 6 \pmod{7}$$

Therefore, there is no solution for $X^{86} \equiv \chi^2 \pmod{7}$