In this section, we study the arithmetic functions.
Definition: An arithmetic function is a function defined over
integers, i.e. f:
$$N \rightarrow C$$
.
Example: 11. The trivial function I: $N \rightarrow C$.
I (n) = 1 for all $n \in M$.
2. The Euler's Phi function: $\phi: N \rightarrow C$
 $\phi(n) := \# \{a: 1 \le a \le n, \gcd(a, m) = 1\}$
13. The divisor function : $d: N \rightarrow C$
 $d(m) := \# \{a: a \ m\}$.
14. The Mixibius function: $\mu: N \rightarrow C$.
 $\mu(m) = \begin{cases} (-1)^{\Gamma} & \text{if } m = p, p_{2} \cdots p_{\Gamma} \text{ with } p_{i} \text{ obstivit} \\ 0 & \text{otherwise}. \end{cases}$
Definition: An arithmetic function: $f: N \rightarrow C$ is multiplicative
if $f(mn) = f(m) f(n)$ when $\gcd(m, n) = 1$.
An arithmetic function $f: N \rightarrow C$ is
completely multiplicative if $f(mn) = f(m) f(n)$ for ell m, n

Remark : f completely multiplicative
$$\Rightarrow$$
 multiplicative.
In fout: 11 I (m) is completely multiplicative.
(2) $\phi(m)$ is multiplicative \rightarrow will show later.
but not completely multiplicative.
(outer) example: $\phi(4) = 2$ $\phi(2) = 1$
 $\phi(4) = \phi(2 \cdot 2) = \phi(2) \cdot \phi(2)$
13) $d(m)$ is multiplicative
but not completely multiplicative.
(outer) example: $d(4) = 3$ $d(2) = 2$
 $d(4) = d(2 \cdot 2) = d(2) \cdot d(2)$
(4). $\mu(m)$ is complicative
but not completely multiplicative.
(outer) example: $d(4) = 3$ $d(2) = 2$
 $d(4) = d(2 \cdot 2) = d(2) \cdot d(2)$
(a). $\mu(m)$ is complicative
 $(conter) example: 4 = 2 \cdot 2 = 2^{2}$
 $\mu(4) = 0$ $\mu(2) = -1$.
 $\mu(4) = \mu(2 \cdot 2) = \mu(2) \cdot \mu(2)$.

Notations:
sum notation:
$$\square$$

product notation: \square
example: $\sum_{p} p$ means: find all primes divides n and
 $p|n$ sum them.
 $\sum_{p|10} = 2 + 5 = 7$
 $\prod_{p|10} (1 - \frac{1}{p})$ means: multiply all $(1 - \frac{1}{p})$ where p/n .
 $\prod_{p|6} (1 - \frac{1}{p}) = (1 - \frac{1}{2})(1 - \frac{1}{3})$
 $= \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$.

Question: why the nultiplicative functions are important.
Ans: Let
$$m = p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$$
 with p_{i} distinct.
Let f be multiplicative.
Then $f(m) = f(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}})$
 $= f(p_{1}^{\alpha_{1}}) f(p_{2}^{\alpha_{2}}) \cdots f(p_{r}^{\alpha_{r}})$
 $= \prod f(p^{\alpha_{1}}) p_{1}^{\alpha_{2}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$
 f is totally determined by its values at prime process
More over, if f is completely multiplicative.
 $f(m) = f(p_{1})^{\alpha_{1}} f(p_{2})^{\alpha_{2}} \cdots f(p_{r})^{\alpha_{r}}$
 $= \prod f(p_{1})^{\alpha_{1}} f(p_{2})^{\alpha_{2}} \cdots f(p_{r})^{\alpha_{r}}$
 $f(m) = f(p_{1})^{\alpha_{1}} f(p_{2})^{\alpha_{2}} \cdots f(p_{r})^{\alpha_{r}}$

First example: Euler's Phi function.
Theorem (11.1 Euler's Phi function formula)
(a) If p is a prime and
$$k \ge 1$$
, then
 $\phi(p^{k}) = p^{k} - p^{k-1} = p^{k}(1 - \frac{1}{p})$
(b) If $gcd(m,n)=1$, then
 $\phi(mn) = \phi(m)\phi(n)$.
(c) For $m = p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$
 $\phi(m) = p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} (1 - \frac{1}{p_{1}}) \cdots (1 - \frac{1}{p_{r}})$
 $= m \cdot \prod_{p|m} (1 - \frac{1}{p})$
Proof of (c): B_{3} (a), (b)
 $\phi(m) = \phi(p_{1}^{a_{1}}) \phi(p_{2}^{a_{2}}) \cdots \phi(p_{r}^{a_{r}} - p_{r}^{a_{r-1}})$
 $= (p_{1}^{a_{1}} - p_{1}^{a_{r-1}}) (p_{1}^{a_{1}} - p_{2}^{a_{1}-1}) \cdots (p_{r}^{a_{r}} - p_{r}^{a_{r-1}})$
 $= p_{1}^{a_{1}} (1 - \frac{1}{p_{1}}) p_{2}^{a_{2}} (1 - \frac{1}{p_{2}}) \cdots p_{r}^{a_{r}} (1 - \frac{1}{p_{r}})$

$$= \mathcal{M} \cdot \prod_{p \mid m} \left(1 - \frac{1}{p} \right) \qquad \square.$$

Proof of (a). Let p be a prime and
$$k \ge 1$$
.
 $\psi(p^{k}) = \# \{a : 1 \le a \le p^{k}, g(d(a, p^{k}) = 1\})$
 $= p^{k} - \# \{a : 1 \le a \le p^{k}, p|a\}$
We can show:
 $\{a : 1 \le a \le p^{k}, p|a\} = \{p, 2p, 3p, 4p, \cdots, (p^{k+1}-1)p, p^{k}\}$
 $\Rightarrow \# \{a : 1 \le a \le p^{k}, p|a\} = p^{k-1}$
This implies:
 $\psi(p^{k}) = p^{k} - p^{k-1}$
Let $g(d(m, n) = 1$.
 $A = \{a : 1 \le a \le mn, g(a)(a, mn) = 1\}$ $\phi(mn) = \# A$.
 $B = \{b : 1 \le b \le m, g(a)(b, m) = 1\}$ $\phi(m) = \# B$.

$$C = \{C: 1 \leq C \leq n, gcd(C, n) = 1\} \quad p(n) = \#C.$$

$$(We need to show: p(mn) = p(m) p(n) i.e.$$

$$\#A = \#B \cdot \#C$$

$$We look at the following set:$$

$$M = \{(b, C): 1 \leq b \leq m, gcd(b, m) = 1\}$$

$$M = \{(b, C): 1 \leq b \leq m, gcd(C, n) = 1\}$$
We conshow: #B · #C = #M
Therefore, H suffices to show: #A = #M.
Strategy: we construct a bijective map
from A to M.
Definition: Let f: A -> B be a map.
• f is injective if f(b_i) = f(b_i) => b_1 = b_2
• f is swjective if for ony be B, we con
find a \in A such that f(a) = b.
• f is a bijection if f is both injective and sujective.

Let A, B be finite sets. If there is a dijective
map f: A
$$\rightarrow$$
 B., then #A= #B.
We construct the following map:
f: A \longrightarrow /M
{a: $1 \le a \le mn$
 $gcd(a,mn)=1$ \longrightarrow {(b,c); $1 \le b \le m$ grd(bn)=1
 $1 \le c \le n$ grd(c,n)=1
 $a \longmapsto$ (a (mod m), a (mod n)).
We need to show f is both injective and surjective.
• injective: bet $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$
(we need to show : $a_1=a_3$)
(a_1 (mod m), a_1 (mod n)) = (a_2 (mod m), a_3 (mod n))
=> $a_1 \equiv a_2$ (mod m)
 $a_1 \equiv a_2$ (mod m)
 gcd (m, n)= 1 \Rightarrow $a_1 \equiv a_3$ (mod mn)

$$\begin{split} |\leq Q_1 \leq mn \quad |\leq Q_2 \leq mn \implies Q_1 = Q_2. \\ \text{Surjective'} \left(\text{let } (b,c) \in \mathcal{M}, \text{ then we can find } a \in \mathcal{A} \\ \text{such that} \quad (a (mod m), a (mod n)) = (b,c) \\ \text{We look at the linear congruent equation:} \\ my = (c-b) (mod n) \\ gcd(m,n) = 1 \implies we can find y_1 such that \\ my_1 = (c-b) (mod n). \\ \text{Set} \quad X = my_1 + b. \\ X \equiv b (mod m) \\ X = my_1 + b \equiv (c-b+b) (mod n) \equiv C (mod n). \\ \text{Take} \quad (A between 1 and mn such that \\ A \equiv X (mod m). \\ Q \equiv X (mod m) \equiv b (mod m) \\ Q \equiv X (mod n) \equiv c (mod n) = C. \\ \end{split}$$

Proof of (c): We should: the map between

$$A = \begin{cases} a: | \leq a \leq mn, \ gcd(a,mn) = 1 \end{cases}$$
oul

$$M = \begin{cases} (b,c): | \leq b \leq m \ gcd(b,m) = 1 \\ | \leq c \leq n \ gcd(c,n) = 1 \end{cases}$$
is bijective.
Therefore # A = # M
A = $\phi(mn)$
M = # B. # C = $\phi(m) \cdot \phi(n)$.
=> $\phi(mn) = \phi(m) \phi(n)$.
The "surjective" part can be generalized to the followly theorem:
Theorem (11.2 Chinese Remainder Theorem) Let m, n
be integers with gcd(m,n) = 1. Let b,c be integers
Then the simultaneous congruences
X = b (mod m) X = C (mod n)
has exautly one solution with $0 \leq x < mn$.