Let
$$
n \ge 1
$$
 be an integer. We recall the divisor function,
\n $d(n) := f(a : 1 \le a \le n, a | n)$
\nIn this class, we give an explicit formula for $d(n)$
\nThorrom $\lfloor \alpha, n \ge 1 \rfloor$ be an integer.
\n \lnot For a prime p odd k > 1, $d(p^k) = k+1$
\n \lnot is $q(d(n,n)=1, \tfor a | (n^n) = d(n)d(n)$
\n \lnot is \lnot we have:
\n $d(n) = \prod_{p^{\alpha}||n} (a+1) = \prod_{p^{\beta}||n} (ord_p(n) + 1)$
\nExample: $d(n) = \#\{a: 1 \le a \le 12, a||12\}$
\n $= \#\{\pm 2, 3, 4, 6, 12\} = 6$
\n $d(n) = \prod_{p^{\alpha}||n} (a+1) = (2+1)(1+1) = 6$
\n $= \prod_{p^{\alpha}||n} (ord_p(1)+1) = (ord_p(1)+1)(ord_p(n)+1)$
\n $= (2+1)(1+1) = 6$.

$$
\rho_{\text{row}}[f \circ f (3); \text{ assume that } n = \rho_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}
$$
\n
$$
d(n) = d(\rho_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r})
$$
\n
$$
\stackrel{(a)}{=} d(\rho_1^{\alpha_1}) d(\rho_2^{\alpha_2}) \cdots d(\rho_r^{\alpha_r})
$$
\n
$$
\stackrel{(b)}{=} (d_1 + 1) (\alpha_2 + 1) \cdots (\alpha_r + 1)
$$
\n
$$
= \prod_{p \mid n} (a + 1) = \prod_{p \mid n} (ord_p(n) + 1) =
$$
\n
$$
\rho_{\text{row}}[f \circ f (1)] : \text{Let } p \text{ be a prime and } k \ge 1
$$
\n
$$
\{a_1 | a \le p \mid a \text{ prime and } k \ge 1
$$
\n
$$
\{a_1 | a \le p \mid a \text{ prime and } k \ge 1
$$
\n
$$
\Rightarrow d(p^k) = \frac{1}{2} \{a_1 | a \le p^k, a|p^k\} = \frac{1}{2} \{1, p, p^2, \cdots p^k\}
$$
\n
$$
= k + 1.
$$

Proof of (a): Assume
$$
ad(m,n)=1
$$

\n
$$
A = \{a: 1 \le a \le mn, a \mid mn \} \qquad # A = d(mn)
$$
\n
$$
B = \{b: 1 \le b \le m, b \mid m \} \qquad # B = d(m)
$$
\n
$$
C = \{c: 1 \le c \le n, c \mid n \} \qquad # C = d(n)
$$

 $(We need to show: # A = # B·H C).$ We define the following set $M = \{(b,c)\};\; b \in B$, $ce \subset S$ #M=#B $\#C$. We define the following map: $M \stackrel{\pm}{\longrightarrow} A$ (b,c) \longmapsto $bc.$ We need to show \bigoplus The map is well-defined (why $f(b, c) = bc \in A$?) \bigodot The map is injective (bc=b'c' => b=b'and (=c') The map is sujective (for $a \in A$, we can find bEB, contains such that $bc = a$ $\mathbb{D}:$ Let be B and ceC , Then b $\mid m$ and $c \mid n$. Then $bc \mid (mn)$ and hence $bc \in A$. This shows that the map is well-defined. Θ Assume that $bc = b'c'$. Suppose that P $||b.$ Then P $|b'c'$ and have $p|b$ or $p|c$

If
$$
p|c^1
$$
, then $p|gcd(b, c^1)$
\nHowever $b|m$ and c^1/n , then $p|gcd(m,n)$
\nThis curtodics that $gcd(m,n)=1$.
\nThen we on divide $\frac{bc}{p} = \frac{b^r c^r}{p}$
\n $\frac{b}{p} \cdot c = \frac{b^r c^r}{p}$
\nWe continue this process and we on finally shaw.
\n $c = c^r$.
\nThen $\frac{bc}{c} = \frac{b^r c^r}{c^r} \Rightarrow b = b^1$.
\n(a) Let $a \in A$. Then a/mn .
\nLet $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$
\n $n = q_1^{k_1} \cdots q_s^{k_s}$ with $p_1 \cdots p_s$
\n $n = q_1^{k_1} \cdots q_s^{k_s}$
\n $a = p_1^{k_1} \cdots p_r^{k_r} q_1^{k_1} \cdots q_s^{k_s}$
\nwith $Y_i \le \alpha_i$ $i.ei \le r$ (*)
\n $\delta_i \le \beta_j$ $|c_i| \le s$ (x^s)
\nSet $b = p_1^{k_1} \cdots p_r^{k_r}$ $c = q_1^{k_1} \cdots q_s^{k_s}$

$$
(\mathbf{x}) \Rightarrow \mathbf{b} \mid m \qquad (\mathbf{x} \mathbf{x}) \Rightarrow c \mid n.
$$
\n
$$
\mathbf{a} \Rightarrow \mathbf{b} \in \mathbf{a}.
$$
\nBy 0, ③, ③, we construct a bijective map between M and A
\n M and A
\n $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{b} \mid M = \mathbf{b} \mid A$ and $d(mn) = d(m)d(n)$
\n $(\text{when gcd}(m,n) = 1).$