Let
$$n \ge 1$$
 be an integer. We recall the divisor function :
 $d(n):= \# \{a: | \le a \le n, a | n \}$
In this class, we give an explicit formula for $d(n)$
Theorem Lex $n \ge 1$ be an integer.
(1) For a prime p and $k \ge 1$, $d(p^k) = k+1$
(2) If $grd(m,n)=1$, then $d(mn) = d(m)d(n)$
(3) We have:
 $d(n) = \prod_{p^n || n} (\alpha + 1) = \prod_{p | n} (0rd_p(n) + 1)$
Example: $d(12) = \# \{a: | \le a \le 12, a | | 12\}$
 $= \# \{1, 2, 3, 4, 6, | 2\} = 6$
 $d(10) = \prod_{p^n || 12} (\alpha + 1) = (2+1)(1+1) = 6$
 $= [1 (ord_p(12)+1) = (ord_1(12)+1)(ord_3(12)+1)(1+1) = 6$

Proof of (3): assume that
$$N = p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$$

 $d(n) = d(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}})$
 $\stackrel{(e)}{=} d(p_{1}^{\alpha_{1}}) d(p_{2}^{\alpha_{2}}) \cdots d(p_{r}^{\alpha_{r}})$
 $\stackrel{(i)}{=} (\alpha_{1}+1) (\alpha_{2}+1) \cdots (\alpha_{r}+1)$
 $= \prod_{p \in [1]} (\alpha+1) = \prod_{p \mid n} (ord_{p}(n) + 1)$
Proof of (1): Let p be a prime and h=1
 $\{a_{1} \mid \leq a \leq p^{k}, a \mid p^{k}\} = \{1, p, p^{2}, \cdots, p^{k}\}$
 $\Rightarrow d(p^{k}) = \# \{a_{1} \mid \leq a \leq p^{k}, a \mid p^{k}\} = \# \{1, p, p^{2}, \cdots, p^{k}\}$
 $= k+1$.

Proof of (1): Assume
$$gcd(m,n)=1$$

 $A = \{a: | \leq a \leq mn, a | mn\}$ # $A = d(mn)$
 $B = \{b: | \leq b \leq m, b | m\}$ # $B = d(m)$
 $C = \{c: | \leq c \leq n, c | n\}$ # $C = d(n)$

(We need to show: #A=#B.#C). We define the following set: #M=#B·#C. $M = \{(b,c); b \in B, c \in C\}$ We define the following map: $M \xrightarrow{f} A$ (b,c) \longrightarrow bc. We need to show: (D) The map is well-defined (why f(b,c)=bc ∈ A?) (2) The map is injective ($bc = b'c' \Rightarrow b = b'$ and (=c')(3) The map is sujective (for a EA, we can find bEB, ceC) such that bc = a D: Let be B and ceC. Then b|m and c|n. Then bc (mn) and hence bceA. This shows that the map is well-defined. (2) Assume that bc = b'c'. Suppose that PIIb. Then P|b'c' and hance P|b' or p|c'

If
$$P|C'$$
, then $P|gcd(b, c')$
However $b|m$ and $c'|n$, then $P|gcd(m,n)$
This contradicts that $gcd(m,n)=1$.
Therefore, $P|b'$.
Then we can divide $\frac{bc}{P} = \frac{b'c'}{P}$
 $\frac{b}{P} \cdot c = \frac{b'}{P} \cdot c'$
We continue this process and we can finally show:
 $c = c'$.
Then $\frac{bc}{c} = \frac{b'c'}{c'} \Rightarrow b = b'$.
(3) Let $a \in A$. Then $a|mn$.
Let $m = P_1^{\alpha_1} \cdots P_r^{\alpha_r}$
 $n = q_1^{\beta_1} \cdots q_s^{\beta_s}$ with $P_0 \cdots P_r$ distince
 $n = q_1^{\beta_1} \cdots q_s^{\beta_s}$ with $P_0 \cdots P_r$ distince
 $n = p_1^{\gamma_1} \cdots p_r^{\gamma_r} q_1^{\beta_s}$
with $Y_i \leq a_i$ isis $r(x)$
 $\delta_j \leq \beta_j$ $|\leq j \leq s$. (**)
Set $b = p_1^{\gamma_1} \cdots p_r^{\gamma_r}$ $c = q_1^{\beta_1} \cdots q_s^{\beta_s}$