Let p be an odd prime number, and let a be an integer.
In the following several sections, we want to study the
solutions for the (quadratic) congruent equation:

$$\chi^2 \equiv a \pmod{p}$$
.
Definition: If the equation above has a solution, then a is
Suppose said to be congruent to a square modulo p or
that
 $a \frac{quadratic}{a residue} \mod{p}$.

$$\chi^{2} \equiv 3 \pmod{7}$$

$$Q^{2} \equiv 0 \pmod{7}$$

$$1^{2} \equiv 1 \pmod{7}$$

$$2^{2} \equiv 4 \pmod{7}$$

$$3^{2} \equiv 2 \pmod{7}$$

$$4^{2} \equiv 2 \pmod{7}$$

$$5^{2} \equiv 4 \pmod{7}$$

$$6^{2} \equiv 4 \pmod{7}$$

Therefore,
$$\chi^2 \equiv 3 \pmod{7}$$
 has no solution.
This implies: 3 is a NR mod 7.

Lemma:
$$(p-a)^2 \equiv a^2 \pmod{p}$$

Proof: $(p-a)^2 \equiv p^2 - 2p + a^2 \equiv a^2 \pmod{p}$
This lemma tells us: if we want to list all QR,
We only need to investigate:

$$1^{2} (\text{mod } p), 2^{2} (\text{mod } p), \dots (\frac{p-1}{2})^{2} (\text{mod } p) (x)$$
Theorem (20.1) Let p be an odd prime. Then there are
exactly $\frac{p-1}{2}$ QR mod p , and exactly $\frac{p-1}{2}$ NR mod p .
Proof: Claim: (A) gives all distinct QR mod p .
Proof of the claime: we choose $b_{1} \neq b_{2} \in \{1, 2, 3, \dots, \frac{p-1}{2}\}$
(Proof by contradiction) Suppose that $b_{1}^{2} \equiv b_{2} (\text{mod } p)$
Then $p | b_{1}^{2} - b_{2}^{2} = (b_{1} - b_{2})(b_{1} + b_{2})$
This implies: $p | (b_{1} - b_{2}) = (b_{1} - b_{2})(b_{1} + b_{2})$
 $p | b_{1} - b_{2}| < \frac{p-1}{2}$ and $b_{1} + b_{2} \neq p \neq (b_{1} - b_{2})$
 $\Rightarrow | b_{1} - b_{2}| < \frac{p-1}{2}$ and $b_{1} + b_{2} \neq p \neq (b_{1} - b_{2})$
A contradiction.
This implies, $b_{1}^{2} \neq b_{2}^{2} (\text{mod } p)$
Therefore, $1^{2}, 2^{2}, \dots, (\frac{p-1}{2})^{2}$ are distinct QR mod p .

However,
$$1^2$$
, 2^2 , 3^2 , $-\left(\frac{P+1}{2}\right)^2$, $\left(\frac{P+1}{2}\right)^2$, $--\left(P+1\right)^2$
are all QR mod p.
By the lemma,
 $1^2 \equiv (P-1)^2 \pmod{p}$
 $2^2 \equiv (P-2)^2 \pmod{p}$
 $\left(\frac{P+1}{2}\right)^2 \equiv \left(P-\frac{P+1}{2}\right)^2 \pmod{p}$
Therefore, 1^2 , 2^2 , $--\left(\frac{P+1}{2}\right)^2$ are all distinct QR mod p.
Next, we finish the proof of the theorem:
We have:
 $1, 2, 3, --p-1$
P-1 numbers intotal.
We have $\frac{P+1}{2}$ QR (mod p)
Then we have $P-1-\frac{P+1}{2} = \frac{P+1}{2}$ NR (mod p). A.

Theorem 20.2. (Quadratic Residue Multiplication Rule, Varsion I
Let p be an odd prime.
(1) The product of two quadratic residues (mod p) is
a quadratic residue. QR × QR = QR.
(2) The product of a quadratic residue and a nonresidua
is a non residue QR × NR = NR.
(3) The product of two nonresidues (mod p) is
a quadratic residue. NR × NR = QR.
The symbol QR behaves like "+1"
The symbol NR behaves like "+1"
We define the following Legendre symbol:

$$\left(\frac{A}{P}\right) = \begin{cases} 1 & a is a QR (mod p) \\ -1 & a is a NR (mod p) \end{cases}$$

Example $\left(\frac{3}{7}\right) = -1$.

Theorem (Qudrotic Residue Multiplication Rule, version 2)
Let p be an odd prime, and (et a, b be
integers satisfying gcd (ab, p) = 1. Then

$$\left(\frac{a}{P}\right)\left(\frac{b}{P}\right) = \left(\frac{ab}{P}\right)$$

Remark: we can drop the condition $gcd(ab, p) = 1$ if

we further assume that $\left(\frac{a}{p}\right) = 0$ if gcd(p, a) > 1