Recall :

Proof of 11) Let
$$a, b$$
 be $QR. (mod p)$
Then $X_1^2 \equiv a \pmod{p}$
 $X_1^2 \equiv b \pmod{p}$
This shows: $X_1^2 X_1^2 \equiv ab \pmod{p}$
i.e. $(X_1 X_1)^2 \equiv ab \pmod{p}$

Therefore,
$$X^{2} \equiv ab \pmod{p}$$
 has a solution
and ab is a $QR \pmod{p}$.
Proof of (2). Let a be a QR
Then $X_{i}^{2} \equiv a \pmod{p}$
Let b be a NR, then $X^{2} \equiv b \pmod{p}$ has no
solution.
(Proof by contradiction). Suppose that ab is a
 QR . Then we can find Zo such that
 $Z_{o}^{2} \equiv ab \pmod{p}$.
Multiply $\overline{X_{i}}^{2}$ on each side,
 $Z_{o}^{2} \cdot \overline{X_{i}}^{2} \equiv ab \cdot \overline{X_{i}}^{2} \pmod{p}$
 $\equiv a \overline{X_{i}}^{2} \cdot b \pmod{p}$

Let
$$b \in f = 1, 2, \dots p-1$$
 be a QR.
Then as is NR by 12)
However, there are only $\frac{p-1}{2}$ NR after
the multiplication of A .
Therefore, the numbers left are QR.
and this means; every time we have
 $b as a NR$, $ab is a QR$.
 $\{1,2,\dots,p\}$ QR \Box NR .
 $\{1,2,\dots,p\}$ QR \Box NR .
 $\{1,2,\dots,p\}$ QR \Box NR .
 $\{1,2,\dots,p\}$ QR \Box QR \Box QR

Theorem: (Polynomial Roots Mod p Theorem)
Let p be a prime number and let

$$f(x) = 0 \circ X^d + 0_1 X^{d+1} + \cdot \cdot 0_d$$

be a polynomial of degree $d \ge 1$ with
integer coefficients and with $p \nmid 0_0$
Then the congruence
 $f(x) \equiv 0 \pmod{p}$
has at most d incongruent solutions.
Proof: (Proof by antradiction.)
Let
 $f(x) = A_0 X^d + A_1 X^{d+1} + \cdot \cdot A_d \quad p \nmid A_0$
be a polynomial with $d \restriction 1$ solutions mod
incognent

p.

We can further assume that
$$f(x)$$
 has
the smallest degree.
Let $Y_1, Y_2, \cdots Y_{d+1}$ be the substitutes.
Then $f(x) = f(r_i) \pmod{p}$ $|sil \leq d$.
 $f(x) - f(r_i) = A_0 x^d + A_1 x^{d+1} + \cdots + A_0 d$
 $-(A_0 r_1^d + A_2 r_1^{d+1} + \cdots + A_0^d)$
 $= A_0(x^d - r_1^d) + A_3(x^{d+1} - r_1^{d+1}) + \cdots$
Note: $x^n - r^n = (x - r)(x^{n+1} + x^{n-2} r + \cdots + r^{n-1})$
 $f(x) - f(r_i) = (x - r_1) \cdot g(x)$ such that
 $\bigoplus The degree of g(x)$ is $d - 1$
 $\bigotimes g(x) = B_0 x^{d+1} + B_1 x^{d-2} + \cdots + B_{d-1}$

with
$$p \neq B_0$$

(i) $g(x)$ has $r_3, r_3 - r_{d+1}$ as solutions
This contradicts that $f(x)$ has the smallest
degree.
Proof of $D, D: x^d - r_1^d = (x-r_1)(x^{d+1} + \cdots)$
This implies:
 $g(x) = A_0 \times^{d-1} + \cdots$
This is degree $d-1$ and $p \neq A_0$
Proof of $O:$ Let $i \in [2, 3, \cdots, d]$
 $f(r_i) - f(r_1) \equiv O - O \pmod{p}$
 $\Rightarrow p | r_i - r_1 \text{ or } p | g(r_i)$

$$\begin{array}{l} r_{i} \text{ is incongruent to } r_{i} \left(\underset{i}{\text{mod } p} \right) \\ \Rightarrow p \notin r_{i} - r_{i} \\ \hline \\ Therefore p \mid g(r_{i}) \text{ and } r_{i} \text{ is a solution} \\ \hline \\ for g(x) \equiv 0 \left(\underset{i}{\text{mod } p} \right). \end{array} \qquad \square \end{array}$$