Recall

Theorem 20.2. (Quodratic Residue Multiplication Rule, Version I)

\nLet p be an odd prime.

\n(1) The product of two qndrotic residues (mod p) is

\n\n- $$
\alpha
$$
 quadratic residue. QR × RR = QR.
\n- β The product of a quadratic residue and a nonresida
\n- β is α nonresidue
\n
\nOR×NR = NR.

(3) The product of two *nonresidues*
$$
(mod p)
$$
 is
\n α quadratic residue. NR × NR = QR.

Proof of (1)
\nLet
$$
\alpha, b
$$
 be QR . (mod p)
\n $\gamma_i^2 \equiv \alpha \pmod{p}$
\n $\gamma_i^2 \equiv b \pmod{p}$
\nThis shows: $\gamma_i^2 \chi_i^2 \equiv ab \pmod{p}$
\n $\therefore (x_1 x_2)^2 \equiv ab \pmod{p}$

There,
$$
x^2 \equiv ab
$$
 (mod p) has a shation

\nand ab is a RR (mod p).

\nProof of (2). Let a be a RR

\nThen $x_1^2 \equiv a$ (mod p)

\nLet b be a NR, then $x^2 \equiv b$ (mod p)

\nso that one solution.

\n(Proof by contradiction). Suppose that ab is a RR.

\nOR. Then we can find $2a$ such that $2a^2 \equiv ab$ (mod p).

\nMultiply $\frac{-2}{x_1}$ on each side,

\n $2\frac{2}{x_1} \cdot \overline{x_1} \equiv ab \cdot \overline{x_1}^2$ (mod p)

\n $(\overline{z_2 x})^2 \equiv 1 \cdot b$ (mod p)

This shows that b is a GR mod p.
\nA contradiction!
\nProof of 131 Let a b a NR. We hold at
\n
$$
\{1, 2, 3, \cdots, P-1\}
$$
 (*)
\nBy the previous lattice, the area exactly
\n $\frac{P-1}{2}$ RR and $\frac{P-1}{2}$ NR.
\nMultiply (x) by a and (mod p)
\n $\{a(mod p), amod (p), \cdots (P-1) mod p\}$
\nThis gives a order complete list of numbers
\nmodulo p (and opposite to p).
\nTherefore, the case exactly $\frac{P-1}{2}$ RR
\nand $\frac{P-1}{2}$ NR.

Let
$$
b \in [1, 2, -p-1]
$$
 be a QR.
\nThen $ab is NR$ by 12)
\nHowever, the x and $\frac{p-1}{2} NR$ after
\nthe multiplication of a .
\nTherefore, the numbers left are QR.
\nand this means; every time we have
\nb as a NR, $ab is a RR$.
\n $\{1,3,-p\}$ \square \square \square \square
\n $\{1,3,-p\}$ \square \square $\{1,3,3,4,5\}$
\n $\{2,3,4,5,4,6\}$ \square $\{2,4,5,6,6\}$
\n $\{0,-1,0,0,0,0\}$ \square \square \square

Theorem: (Polynomial Roots Model p Theorem)
\nLet p be a prime number and let
\n
$$
f(x) = a_0 \times a_1 + a_1 \times a_1 + \cdots + a_n
$$

\nbe a polynomial of degree $a_1 \times a_1 + \cdots + a_n$
\ninteger coefficients and with p\n $f(x) = 0$ (mod p)
\nhas at most d incongruent solutions.
\nProof: (Proof by contradiction.)
\nLet
\n $f(x) = A_0 \times a_1 + A_1 \times a_1 + \cdots + A_n + A_n$ p\n $f(x) = A_0 \times a_1 + A_1 \times a_1 + \cdots + a_n$ p\n $f(x) = A_0 \times a_1 + A_1 \times a_1 + \cdots + a_n$ p\n $f(x) = a_0 \times a_1 + \cdots + a_n \times a_n$

We can further assume that
$$
f(x)
$$
 has
\nthe smallest degree.
\nLet $r_1, r_2, \dots r_{d+1}$ be the subtrions.
\nThen $f(x) = f(r_1) (mod p) |s_1^2 \le d$.
\n $f(x) - f(r_1) = A_0 x^d + A_1 x^{d+1} + A_0 x^d$
\n $-(A_0 r_1^d + A_2 r_1^{d+1} + ... A_0^d)$
\n $= A_0 (x^d - r_1^d) + A_1 (x^{d+1} - r_1^{d+1}) + ...$
\n $N_0 t_1: x^n - r^n = (x - r_1)(x^{n+1} + x^{n-1} + ... + r^{n-1})$
\n $f(x) - f(r_1) = (x - r_1) \cdot f(x) \text{ such that}$
\n $0 \text{ The degree of } g(x) \text{ is } d - 1$
\n $0 \text{ a } g(x) = B_0 x^{d+1} + B_1 x^{d-2} + ... B_d$

which
$$
p \nmid B_0
$$

\n $\bigcirc g(x)$ has r_2 , r_3 - r_{d+1} as solutions
\nThis amtodicts that $f(x)$ has the smallest
\ndegree.
\n
\n $P_{A^0} \circ f \oplus \bigcirc g(x) \cdot x^d - r_1^d = (x-r_1)(x^{d-1} + \cdots)$
\nThis implies:
\n $g(x) = A_0 \times d^{-1} + \cdots$
\nThis is degree $d-1$ and $p \nmid A$.
\n
\nProof $-f \oplus : \text{Let } i \in [2, 3, -d]$
\n $f(r_i) - f(r_i) \equiv 0 - 0 \pmod{p}$
\n $\Rightarrow (r_i - r_1) g(r_i) \equiv 0 \pmod{p}$
\n $\Rightarrow p \mid r_i - r_1$ or $p \mid g(r_i)$

$$
\begin{array}{ll}\n\text{This is important to } & \text{I}_1 \text{ (mod } p) \\
\Rightarrow & p \downarrow \text{I}_i - \text{I}_1 \\
\text{Theefove } & p \mid g(\text{I}_i) \text{ and } & \text{I}_i \text{ is a solution} \\
\text{for } & g(x) \equiv 0 \text{ (mod } p).\n\end{array}
$$