Recall: let p be on odd prime. Then if $p = 1 \pmod{4}$ $\left(\frac{-1}{P}\right) = \begin{cases} 1 & \text{if } r = + \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}$ $\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1,7 \pmod{\delta} \\ -1 & \text{if } p \equiv 3,5 \pmod{\delta} \end{cases}$ Question: let p,q be odd primes, what is $(\frac{p}{q})$? Theorem 22.1. (Quadratic Reciprocity) Let P, 9 be distinct odd primes, then $\left(\frac{q}{P}\right)$. $\left(\frac{P}{q}\right) = (-1)^{\frac{p}{2}\cdot\frac{q}{2}}$

Remark: () If $P \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then

$$\frac{p-1}{2} \cdot \frac{q-1}{2} \quad \text{is even.}$$
Therefore, $\left(\frac{q}{p}\right) \cdot \left(\frac{p}{q}\right) = 1 \implies \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)$
(2) If $p \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$, then
$$\frac{p-1}{2} \cdot \frac{q-1}{2} \quad \text{is odd}$$
Therefore, $\left(\frac{q}{p}\right) \cdot \left(\frac{p}{q}\right) = -1 \implies \left(\frac{q}{p}\right) = -\left(\frac{p}{q}\right)$

Example: Find
$$\left(\frac{1}{137}\right)$$

Solution: $7 \equiv 3 \pmod{4}$, $137 \equiv 1 \pmod{4}$
By quadhotic reciprocity, $\left(\frac{1}{137}\right) = \left(\frac{137}{7}\right)$
 $137 \equiv 7 \cdot 19 + 4 \Rightarrow \left(\frac{137}{7}\right) = \left(\frac{4}{7}\right)$
Notice that $4 = 2^3 \equiv 2^2 \pmod{7} = 2$
Therefore $\left(\frac{1}{737}\right) = 1$. A
Next, we define the following symbol: let a be an integer
Then by the primary factorization,
 $a = p_1 p_2 \cdots p_r$ (p_1 might be same)
Then we have (let p be on odd prime)
 $\left(\frac{a}{P}\right) = \left(\frac{p_1}{P}\right) \left(\frac{p_2}{P}\right) \cdots \left(\frac{p_r}{P}\right)$.
Example: Find $\left(\frac{55}{179}\right)$
 $= \left(\frac{179}{5}\right) \cdot \left(\frac{11}{179}\right)$
 $5 \equiv 1 \pmod{4}$
 $= \left(\frac{179}{5}\right) \cdot \left(-1\right) \cdot \left(\frac{179}{11}\right)$

$$\begin{aligned} |79 = 5 \cdot 35 + 4 & \left(\frac{179}{5}\right) = \left(\frac{4}{5}\right) = 1 \\ |79 = 11 \cdot 16 + 3 & \left(\frac{179}{11}\right) = \left(\frac{3}{11}\right) \\ & 3 \equiv 3 \pmod{4} \\ & 41 \equiv 3 \pmod{4} \\ & 41 \equiv 3 \pmod{4} \\ & 11 \equiv 3 \pmod{4} \\ & \left(\frac{3}{11}\right) = -\left(\frac{11}{3}\right) = -\left(\frac{2}{3}\right) = 1 \\ & 11 = 3 \cdot 3 + 2 \end{aligned}$$

$$\Rightarrow \left(\frac{55}{179}\right) = \left(\frac{179}{5}\right) \cdot (-1) \cdot \left(\frac{179}{11}\right) \\ & = 1 \cdot (-1) \cdot 1 = -1 . \end{aligned}$$

Moreover, let a, b be odd positive integers. We con urite Indeed, a con take value -1 or 2 $Q = P_1 P_2 - P_r$ $b = q_1 q_2 - ... q_s$ We define the Jarobi symbol: $\left(\frac{a}{b}\right) = \left(\frac{a}{91}\right) \left(\frac{a}{92}\right) \cdots \left(\frac{a}{9s}\right)$ $= \left(\frac{P_{1}}{q_{1}}\right) \left(\frac{P_{2}}{q_{1}}\right) \cdots \left(\frac{P_{r}}{q_{1}}\right) \cdots \left(\frac{P_{r}}{q_{s}}\right)$ $= \prod_{\substack{i \in i \in r}} \left(\frac{p_i}{q_i} \right)$ [≤] ≤ S

Theorem 22.2 (Generalized Low of Quadratic reciprocity)
Let
$$a, b$$
 be add positive integers,
 $\left(\frac{-1}{b}\right) = \begin{cases} 1 & \text{if } b \equiv 1 \pmod{4} \\ -1 & \text{if } b \equiv 3 \pmod{4} \end{cases}$
 $\left(\frac{1}{b}\right) = \begin{cases} 1 & \text{if } b \equiv 3 \pmod{4} \end{cases}$
 $\left(\frac{1}{b}\right) = \begin{cases} 1 & \text{if } b \equiv 1, 7 \pmod{4} \end{cases}$
 $\left(\frac{1}{b}\right) = \begin{cases} 1 & \text{if } b \equiv 1, 7 \pmod{4} \end{cases}$
 $\left(\frac{1}{b}\right) = \begin{cases} 1 & \text{if } b \equiv 3, 5 \pmod{4} \end{cases}$
 $\left(\frac{1}{b}\right) \cdot \left(\frac{1}{b}\right) = (-1)^{\frac{A-1}{2} + \frac{B-1}{2}}$

Remark: the proof is an application of the original version. Here we only do one simple example:

$$\left(\frac{-1}{b}\right) = \begin{cases} 1 & \text{if } b \equiv 1 \pmod{4} \\ -1 & \text{if } b \equiv 3 \pmod{4} \end{cases}$$

proof: We write b as its primary decomposition Furthermore, we rearrage the primes of b such that: b= P_1 P_2 -- Pr 9_1 --- 9_s

$$P_{i} \equiv 1 \pmod{4}$$
 $Q_{i} \equiv 3 \pmod{4}$

Exercise: if S is even, than
$$b \equiv 1 \pmod{4}$$

if S is odd, then $b \equiv 3 \pmod{4}$.
(ase I: S is even $\Rightarrow b \equiv 1 \pmod{4}$)
 $\left(\frac{-1}{b}\right) = \left(\frac{-1}{P_{1}}\right) \cdots \left(\frac{-1}{P_{r}}\right) \cdot \left(\frac{-1}{T_{1}}\right) \cdots \left(\frac{-1}{T_{s}}\right)$
 $= \left(1\right)^{r} \cdot \left(-1\right)^{S} = 1$ (s even)
 $= \left(-1\right)^{\frac{b-1}{2}}$ ($b \equiv 1 \pmod{4}$)
(ase II: S is odd) $\Rightarrow b \equiv 3 \pmod{4}$
 $\left(\frac{-1}{b}\right) = \left(\frac{-1}{P_{1}}\right) \cdots \left(\frac{-1}{P_{r}}\right) \cdot \left(\frac{-1}{T_{1}}\right) \cdots \left(\frac{-1}{T_{s}}\right)$
 $= \left(1\right)^{r} \cdot \left(-1\right)^{S} = -1$ (s odd)
 $= \left(-1\right)^{\frac{b-1}{2}}$ ($b \equiv 3 \pmod{4}$)
I.
History: (1) Ewler and Lagrange were the first to formulate
the Law of Quadratic Reciprocity.