Recall: in last class, we studied which primes can be
written as of sums of two squares, i.e.

$$p = a^2 + b^2$$
.
Answer: A prime can be written as a sum of two
squares if and only if $p=2$ or $p=1 (mod4)$.
In toolog's class, we study:
Which integers can be written as sums of two squares?
Which integers can be written as sums of two squares?
Definition: Let n be an integer. n is squarefree if
the prime decomposition of n is of the form
 $n = P_1 P_2 \cdots Pr$
with P_i distinct.
Example: $12 = 2 \cdot 2 \cdot 3$ not squarefree.
Observation: for any integer n, n can be written in
the form
 $n = n_1 N_2^2$

where n, is a squarefree integer ond N2 is an integer. Remark: gcd(n, n) might be greater than 1. $24 = 2 \cdot 2 \cdot 2 \cdot 3$ Example : $= 2 \cdot 3 \cdot 2^{2} = 6 \cdot 2^{2}$ N=6 squarefree $N_{1}^{2} = 2^{2}.$ Question: how to write on integer N is this form? Answer: By prime de composition, we can write: $N = P_1^{\alpha_1} P_2^{\alpha_2} \cdots P_r^{\alpha_r} P_1^{\beta_1} \cdots P_s^{\beta_s}$ with di, ... dr odd and pi, ... Bs oven. (We just need to rearrange the prime powers .) Then N = P, P, --- Pr $h_{2} = p_{1}^{\frac{\alpha_{1}+1}{2}} p_{3}^{\frac{\alpha_{2}-1}{2}} \cdots p_{r}^{\frac{\alpha_{r}-1}{2}} p_{1}^{\frac{p_{1}}{2}} \cdots p_{s}^{\frac{p_{s}}{2}}$ We can check: $N = N_1 \cdot N_2 \cdot$

Sometimes, we call
$$n_1$$
 the squarefree part of n_1 .
Theorem: Let n be an integer. We write $n = n_1 n_2^2$
with $n_1 = p_1 \cdots p_r$ being squarefree.
Then n_1 can be written as sums of two squares
if and only if each p_1 is 2 or $\equiv 1 \pmod{4}$.
Example: (1) $n = 15 \Rightarrow n_1 = 15 = 3 \cdot 5$
 $3 \ddagger 1 \pmod{4}$
 $\Rightarrow 15 \operatorname{cm} notic be written as sums of two squares.$
 $(2) \quad n = 45 \cdot = 5 \cdot 3^2 \Rightarrow n_1 = 5$
 $5 \equiv 1 \pmod{4}$
 $\Rightarrow 45 \operatorname{com} be written as sums of two squares$
 $45 = 6^2 + 3^2$.
To prove the theorem, we have two paots:
Let n be an integer and $n = n_1 n_2^2 = p_1 \cdots p_r n_2^2$
 $(1) \quad 1f \quad n = a^2 + b^2 \quad \text{for some } a_1 b \in \mathbb{Z},$
then seath prime of $p_1, \cdots p_r$ is

oither 2 or congruent to
$$1 \pmod{9}$$
.
12) If each prime $p_1, \cdots p_r$ is either 2 or $\equiv 1 \pmod{9}$,
then $n = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.
Observation: By the construction of $n = n_1 n_2^2$
 $p|n_1 \Rightarrow \operatorname{ord}_p(n)$ is an odd number.
Therefore, (a) is saying that: bet $n = a^2 + b^2$ with $a, b \in 2$.
if $\operatorname{ord}_p(n)$ is odd, then $p \equiv 3 \pmod{9}$.
To prove (1), it suffices to prove this new statement.
Proof of (1) Proof by contradiction:
Let n be an integen such that
(i) $n = a^2 + b^2$ with $a, b \in 2$
(ii) we can find a prime p such that
ord $p(n)$ is odd and $p \equiv 3 \pmod{4}$.
Sime ord $p(n)$ is odd, $p|n$. Then
(i) $= a^2 + b^2 = 0 \pmod{9}$
If $g cd(a, p) = 1$, then
 $b^2 = -a^2 \pmod{9}$ and $-a^2$ is a QR

This implies
$$\left(\frac{-a^{2}}{P}\right) = \left(\frac{-4}{P}\right) = 1$$

This is impossible since $p=3 \pmod{4}$
Therefore $p|a$ and $p|b$
Then $n = a^{2}+b^{2} = p^{2} \left\{ \left(\frac{a}{P}\right)^{2} + \left(\frac{b}{P}\right)^{2} \right\} \Rightarrow p^{2}|n$.
We then book at $\frac{n}{P^{2}} = \left(\frac{a}{P}\right)^{2} + \left(\frac{b}{P}\right)^{2}$
If $p + \frac{n}{P^{2}}$, then $\operatorname{ord}_{p}(n) = \lambda$ contradiction.
If $p|\frac{n}{P^{2}}$, we run the argument again
ord we get $\frac{n}{P^{2}} = \left(\frac{a}{P^{2}}\right)^{2} + \left(\frac{b}{P^{2}}\right)^{2}$ with $p^{2}|a$
We can always costimuous this process
ord finally we show $\operatorname{ord}_{p}(n)$ is even. A antiodiction.
I.
Proof of part (2): We prove (2) in the following steps:
Step I: Let p_{1}, p_{2} be two primes being 2 or $1 \pmod{4}$.
Recall : for $x, y, z, w \in \mathbb{R}$
 $(\chi^{2}+y^{2})(z^{2}+w^{2}) = (\chi^{2}+yw)^{2} + (\chi^{W}-yz)^{2}$
By the choice of p_{1}, p_{2} $n = a^{2}+b^{2}$

Then
$$p_{1}p_{1}=(a_{1}^{2}+b_{1}^{2})(a_{2}^{2}+b_{2}^{2})$$

$$=(a_{1}a_{2}+b_{1}b_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}$$
Step II: Let $n=p_{1}\cdots p_{r}$ be squarefree and
each p_{i} is 2 or $1(mod 4)$ then $n=a^{2}+b^{2}$
for some $a,b\in\mathbb{Z}$
Proof by induction on \underline{r} .
Step II: Let $n=n_{1}n_{2}^{2}=p_{1}\cdots p_{r}\cdot n_{2}^{2}$ with $p_{1}\cdots p_{r}$
are 2 or $1(mod 4)$ then $n=a^{2}+b^{2}$ for some $ab\in\mathbb{Z}$.
By step II, $n_{1}=a_{1}^{2}+b_{1}^{2}$ for some $a_{r}b_{1}\in\mathbb{Z}$.
 $n=(a_{1}^{2}+b_{1}^{2})\cdot n_{2}^{2}$
 $=(a_{1}n_{2})^{2}+(b_{1}n_{2})^{2}$