Suppose that we have a right triangle:
\n
$$
\begin{array}{ccc}\n& c\\ \hline\n& a\\ \hline\n& a\\ \hline\n\end{array}
$$
\nPythagorean Theorem: $a^2 + b^2 = C^2$
\n $2a^2 + b^2 = 12^2$
\n $2a^2 + b^2 = 17^2$
\n 2

When so will (da, db, dc) with d another integer.

\nThis is because,
$$
a^4 + b^2 = c^2 \Rightarrow (da)^2 + (db)^2 = (dc)^2
$$
.

\nDefinition: A primitive Pythagorean triple (PPT) is a triple of numbers (a, bc) such that a, b, c have no common divisors and $a^2 + b^2 = c^2$

\nLemma: let (a, b, c) be a PPT, then we can assume that a add and b even.

\nProof: Here are 3 cases for the parity of a, b

\nCase I: Both of a, b are even

\n(as I: Both of a, b are odd and b even)

\n(as II: Both of a, b are odd and b even)

\nSince III: On a of of a, b is even and the other is odd.

\nFor $cos 1$: if a, b are even,

 $a=2x$, $b=2y$ with x,y integers. $C^2 = \lambda^2 + b^2 = (2x)^2 + (2y)^2 = 4(x^2 + y^2)$ \Rightarrow 2 | c. \Rightarrow 2 | a, b, c \Rightarrow This is not prinitive! For case $I\hspace{-.6em}I\hspace{-.6em}I\hspace{-.6em}I\hspace{-.6em}I\hspace{-.6em}I$ are odd, then $0 = 2x + 1$ $b = 2y + 1$ with x, y integers $C^{2} = \theta^{2} + b^{2} = (2x+1)^{2} + (2y+1)^{2}$ $= 4x^{2} + 4x + 1 + 4y^{2} + 4y + 1$ $= 2 (2x^2+2x+2y^2+2y+1)$ On the one hand, $2|c^2 \Rightarrow 2|c \Rightarrow 4|c^2$ $\int n$ the other hand, $2x^2+2x+2y^2+2y+1$ is odd $\Rightarrow 4/2(2x^{1}+2x+2y^{2}+2y+1)$ A controdiction / Theofore, only case III happens provided that (a, b, c) is a PPT. \Box We can assume that a odd and b even

Theorem: Let (a, b, c) be a PPT with a odd an b even Then we can find odd integers s >t>1 smh that 11) $gcd(s,t) = 1$ 12) $0=st$ $b=\frac{s^{2}+t^{2}}{2}$ $c=\frac{s^{2}+t^{2}}{2}$ Furthermore, all PPT can be derived in this way. Proof: \int For "Furthermore part, this will be a homework problem Assure that (a, b, c) is a PPT with ^a odd and b even This implies $a^2 + b^2 = c^2 \implies a^2 = c^2 - b^2 = (c - b)(c + b)$ Claim: Both c-b and ctb are squares. Proof of Claim: Notice that $\alpha^2 = (C+b)Cc-b)$ it suffices to show that $gcd(ct+b, c-b) = 1$. Suppose not, let p be a prime and $p | gcd(ctb, c-b) \Rightarrow p | ctb \text{ and } p | c-b$

We also know that
$$
\cdot
$$
 be even and \cdot odd.
\n
$$
P| c+b \Rightarrow P \text{ is odd.}
$$
\n
$$
\Rightarrow P| c+b+c-b=2c \Rightarrow P|c
$$
\n
$$
P| c+b-c-b=2b \Rightarrow P|b
$$
\n
$$
\alpha^2 = c^2-b^2 \Rightarrow P|a \Rightarrow P|a,b,c.
$$
\nThus, coordinates, that (a,b,c) is a *OPT*!
\nThus, we set $c+b=3^2$ $(c+b\cdot c-b\Rightarrow s\cdot b)$
\n $c-b = t^2$
\n $c+b$ odd $\Rightarrow s$ odd $c+b$ odd $\Rightarrow t$ odd.
\nBy the **proof** of c from $gcd(c+b, c+b)=1$
\n $\Rightarrow gcd(s, t) = 1$.
\n $(1) \swarrow$
\n $2c=5^2+t^2 \Rightarrow c=\frac{8^2+t^2}{2}$
\n $2b=5^2+t^2 \Rightarrow b=\frac{s^2+t^2}{2}$

$$
Q = \sqrt{b+c)(b-c)} = \sqrt{s^{2} \cdot t^{2}}
$$

= st
This means: $a = st$ $b = \frac{s^{2} \cdot t^{2}}{2}$ $c = \frac{s^{2} \cdot t^{2}}{2}$ A .
Thovenn: A number C appears as the hypotenuse of a
OPT (a,b,c) if and only if C is a product
of primes each of which is 1 (mod 4).