Fermat's Last Theorem : For
$$n \ge 3$$
, the equation
 $\chi^n + \gamma^n = Z^n$
has no solutions in positive integens X, Y, Z
In today's class, we consider $n=4$ (ase.
The equation becomes : $\chi^4 + \gamma^4 = Z^4$
Indeed, we will obav:
Theorem 30.1 The equation $\chi^4 + \gamma^4 = Z^2$
has no solutions in positive integens X, Y, Z.
Remark: This theorem is stronger than " no solutions for
 $\chi^4 + \gamma^4 = Z^4$."
Assume Theorem 30.1 is valid. Suppose that
 $\chi^4 + \gamma^4 = Z^4$ has a solution
Then set $x=X$, $y=\gamma$, $z=Z^2$
Then $\chi^4 + \gamma^4 = Z^2$. A controdiction.
Theofore, it suffices to show Theorem 30.1.

Remark: We will again use the "descent" method:
suppose that we can find a solution:
$$(X_U, Y_1, Z_1)$$

then we can find another solution (X_U, Y_2, Z_2)
with $Z_2 < Z_1$
We repeat this process and we get:
 $Z_1 > Z_2 > Z_3 = -$
Finally, we can find $Z = 1$, which forces eithen
 X or Y to be 0. A instrudiction.
Therefore, what we prove for the theorem is:
"suppose that we find a solution (X_1, Y_1, Z_2) ,
then we can find another solution (X_2, Y_2, Z_2) such that
 $(X_1, Y_1, Z_2) = 0$
 $(Z_1 > Z_2)$.
Proof: Suppose that we have the solution;
 $X_1^4 + Y_1^4 = Z_1^2$
Then this can be written as;
 $(X_1^2)^2 + (Y_1^2)^2 = Z_1^2$

Furthermore, we can assure that X, Y, Z, has no common divisors. Theofore, (X_1^2, y_1^2, z_1) is a PPT. Then we can find 5=t=1 odd such that 11) gcd (sit) = 1 $y_{l}^{2} = st$ $y_{l}^{2} = \frac{s^{2} - t^{2}}{2}$ $z_{l}^{2} = \frac{s^{2} + t^{2}}{2}$ (Lemma: let n be an odd square, then $n \equiv 1 \pmod{4}$ Notice that sit are odd and st= X1² This implies that $St \equiv 1 \pmod{4}$ This will show: $S \equiv t \pmod{4}$ Why?

On the other hand,

$$2y_1^2 = s^2 - t^2 = (s - t)(s + t)$$

Notice that $2|s - t, s + t, 4|(s - t)(s + t) = 24|2y_1^2$
and hence $2|y_1^2 = 2|y_1 = 8|2y_1^2$
Notice that $gcd(s_1 t) = 1$, and $s \equiv t \pmod{4}$

This will show:
$$S-t=0 \pmod{4}$$
, $S+t=2 \pmod{4}$
ord $gcd(s-t, s+t)=2$.
Therefore, we can write $S+t=2 \cdot A$ A odd.
 $S-t=4 \cdot B$.
This gives: $2y_1^2 = 8A \cdot B$ with $gcd(A, 2B)=1$
 $\Rightarrow (\frac{y_1}{2})^2 = AB$ with $gcd(A, 2B)=1$
 $\Rightarrow Both A, B$ are squares.
We write: $S+t=2h^2$ with $gcd(h, 2v)=1$.
 $S-t=4v^2$
This gives: $S=(u^2+2v^2)$ $z_1=\frac{s^2+t^2}{2}=\frac{(u^2+u^2)^2+(u^2+v)^2}{2}$
 $t=(u^2-2v^2)$ $=(u^4+4v^4+v^4)^2$
Then $\chi^2 = St = (u^4 - 4v^4)$
Next, we set $A=x$, $B=2v^2$ $C=u^2$ primitive
The equation becomes: $A^2 + B^2 = C^2$

 $\Rightarrow 2v^{2} = B = \frac{S^{2} - T^{2}}{2} \Rightarrow 4v^{2} = S^{2} + T^{2} = (S - T)(S + T)$

Again: gcd(S-T, S+T) = 2

Then:
$$S+T=2X^2$$
 $S-T=2Y^2$
This gives: $S=X^2+Y^2$ and $T=X^2-Y^2$

