Fermat's Last Theorem : For
$$
n \ge 3
$$
, the equation
\n
$$
X^n + Y^n = Z^n
$$
\nhas no solutions in positive integers X, Y, Z
\nIn today's class, we consider $n = 4$ Gse.
\nThe equation becomes: $X^4 + Y^4 = Z^4$
\nInded, we will show:
\nThe equation $X^4 + Y^4 = Z^4$
\n
$$
X^4 + Y^4 = Z^4
$$
\nAs no solutions in positive integers X, Y, Z.
\nRemark: This theorem is stronger too " no solutions for
\n $X^4 + Y^4 = Z^4$ ".
\nAssume Theorem 3e.1 is valid. Suppose that
\n $X^4 + Y^4 = Z^4$ has a solution
\n $X^4 + Y^4 = Z^4$ has a solution
\nThen $X^4 + Y^4 = Z^4$ has a solution
\nThen $X^4 + Y^4 = Z^2$. A transformation.
\nTherefore, it suffiues to show Theorem 3e.1.

Remark We will again use the descent method suppoe that we can find ^a solution ^x ^y ^z then we can find another solution Xu ^y Zz ⁿith Zz ^c Z and we get We repeat this process Z Z2 ⁷ Z3 ^一 Finally we can find ^Z ¹ which forces either to b 0 A contradiction ^X or y Therefore what we prove for the theorem is supposethat we find ^a solution ^X ^y ^Z then we canfind another solution X2 y ^Z smhthat 111 Xi Yu 2230 121 Z1 Z2 roof Suppose that we have the solution 4 ^X⁴ ty Zi Then this can be written as ⁱ Xi 斗 yi zi

Furthermore, we can assure that $x_1, y_1 z_1$ has no common divisors. Theofore, (x_1^2, y_1^2, z_1) is a PPT. Then we can find S>t>1 odd sud that 11) $gcd(s,t) = 1$ $|21 \t X|^{2} = 5t$ $|y|^{2} = \frac{5^{2} - t^{2}}{2}$ $|z|^{2} = \frac{5^{2} + t^{2}}{2}$ (Lemma: let n be an odd square, then $n \ge 1 \pmod{4}$ Notice that s_it are odd and $st = x_1^2$ This implies that $st \equiv 4 \pmod{4}$ This vill show: $S \equiv t \pmod{4}$ Why?

On the other hand,

\n
$$
3y_{1}^{2} = S^{2} - t^{2} = (S-t)(S+t)
$$
\nNotive that $2|S-t|$, $5+t$, $4|S-t|(s+t) \Rightarrow 4|2y_{1}^{2}$

\nand hence $2|y_{1}^{2} \Rightarrow 2|y_{1} \Rightarrow 8|2y_{1}^{2}$

\nNotice that $gcd(S,t)=1$, and $Set(mod4)$

Thus will show:
$$
s-t \equiv o \pmod{4}
$$
, $st \equiv o \pmod{4}$
\nand $gcd(s-t, s+t) = 2$.
\nThese
\n $s-t = 4 \cdot B$.
\nThus gives: $2y_1^2 = 8A \cdot B$ with $gcd(A, 2B) = 1$
\n $\Rightarrow \left(\frac{y_1}{2}\right)^2 = AB$ with $gcd(A, 2B) = 1$
\n $\Rightarrow 8b \cdot b$ A, B are squares.
\nWe write: $3t = 2u^2$ with $gcd(u, 2v) = 1$.
\n $s-t = 4v^2$
\n $s-t = 4v^2$
\nThis gives: $s = u^2 + 2v^2$ $z_1 = \frac{s^2 + t^2}{2} = \frac{(u^2 + v^2)^2 + (u^2 + v^2)^2}{2}$
\n $t = u^2 - 2v^2$ $= u^4 + 4v^4 > u^2$
\nThen $\chi^2 = st = u^4 - 4v^4$
\n $\Rightarrow \chi^2 + 4v^4 = u^4$ $gcd(u, 2v) = 1$
\nNext, we set $A = x$, $B = 2v^2$ $C = u^2$ primitive
\nThe equation becomes: $A^2 + B^2 = C^2$

=> $2v^2 = B = \frac{S^2 - T^2}{2}$ => $4v^2 = S^2 + T^2 = (S-T)(S+T)$

Again: gcd $(S-T, S+T) = 2$

Then:
$$
5 + T = 2 \times^2
$$
 $5 - T = 2 Y^2$
This gives: $S = X^2 + Y^2$ and $T = X^2 - Y^2$

