We have the set of positive integers: {0, 1, 2, 3, ---] the set of integers: $(0, \pm 1, \pm 2, \pm 3, \dots) = \mathbb{Z}$ Today ne introduce the rational numbers: $(R = \left\{ \frac{m}{n} : n \neq 0, m, n \in \mathbb{Z} \right\}.$ Every number in Q is called a rational number. Otherwise, it is called an irrational numbers. Theorem: JE is an irradional number. (15 is an irrational number, this means 12 is not a rational number.) Proof: (Proof by contradiction). Suppose that Ji is a rational mumber. Then we can write $\sqrt{2} = \frac{m}{n}$ with $m, n \in \mathbb{Z}$. We can further assume that g(d(m, n) = 1)sime $\frac{M}{N} = \frac{\frac{M}{gcd(m,n)}}{\frac{n}{gcd(m,N)}}$ and we can replace (m,n) by $\left(\frac{m}{gd(m,n)}, \frac{n}{gcd(m,n)}\right)$.

$$\begin{split} \sqrt{\Sigma} &= \frac{m}{n} \implies \sqrt{\Sigma} \cdot n = m \implies (\sqrt{\Sigma} \cdot n)^2 = m^2 \\ &= 2m^2 = n^2. \\ \text{This shows: } 2|n^2 \implies 2|n \\ \text{Notive that } n^2 \text{ is a square, } 2|n \implies 4|n^2 \\ \text{Then } 4|2m^2 \implies 2|m^2 \implies 2|m \\ \text{This means } 2|gcd(m, n). \\ \text{A controdiction ! } \\ \text{Remark: This theorem shows the existence } f \\ \text{an irrational number.} \\ \text{Indeed, there are "more" irrational numbers than \\ rational numbers. \\ \text{Relations to decimals:} \\ \text{We have } 3 \text{ types of decimals:} \\ \text{up finite decimal } 0.2, 0.414 \\ \end{split}$$

Repeated decimal: 0.333---- 0.143143143143143...
(3) non repeating decimal: 1.414..., 3.1415926....

We can pinne :
rational number (=> finite decimal or repeating decimal
irrational number (=> non repeating decimal.
Definition: Let A be a set. An operation is a
map Ax A
$$\rightarrow$$
 A.
Example: A = R, then $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is an operation
(a,b) \mapsto atb
 $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is an operation.
(a,b) \mapsto ab
Definition: Let F be a set with 2 operations \oplus , \otimes .
Then we say (F, \oplus , \otimes) is a field if
fir any a,b, c \in F
(1) For \oplus
(a Associative: $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
(b) commutative $a \oplus b = b \oplus a$
(c) Additive identity: we can find $z \in F$ such that
 $a \oplus z = a$

(d) Additive inverse: for
$$a \in F$$
, ne can always find
on element, denoted by $-a$, such that
 $a \oplus (-a) = Z$.

(2) For
$$\otimes$$

(a) Associative: $a \otimes (b \otimes c) = (a \otimes b) \otimes c$
(b) Commutative: $a \otimes b = b \otimes a$
(c) Multiplicative wit: we can find $e \in F$ such that
 $a \otimes e = a$ for any $a \in F$
(d) Multiplicative inverse: for any $z \neq a \in F$, we can find
an element, denoted by a^2 ,
such that $a \otimes a^{-1} = e$.
(3) compatibility between \oplus and \otimes
(a) distributive: $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
Theorem: $(R, +, -)$ is a field. Here $+$ is the usual
addition and \cdot is the usual multiplication.
Proof: (1, For $+$
(a) Take $a, b, c \in R$, $a + (b+c) = (a+b)t c$

1b) Take
$$a, b \in \mathbb{Q}$$
, $a+b=b+\alpha$
(c) We on cleak: for any $a \in \mathbb{Q}$,
 $a+0=\alpha$ 0 is the additive unit.
(d) For any $a \in \mathbb{Q}$, we have:
 $a+(-a) = 0$.
(2) For \cdot
(a) Take $a, b, c \in \mathbb{Q}$, $a(bc)=(ab)c$
(b) For $a, b \in \mathbb{Q}$, $a \cdot b = b \cdot a$
(c) We can show: for any $a \in \mathbb{Q}$.
 $a \cdot 4 = \alpha$
(d) If $0 \neq a = \frac{m}{n} \in (\mathbb{Q}, then)$
 $a \cdot \frac{n}{m} = \frac{m}{n} \cdot \frac{m}{m} = 1$
(3) Compatibility between $+$ and \cdot
Distribution law: $a(b+c) = a \cdot c + b \cdot c$.
Therefore, $(\mathbb{Q}, +, \cdot)$ is a field.
H.

Some other examples of field:
(1)
$$(\mathbb{R}, +, \cdot)$$
 real numbers
(2) $(\mathbb{C}, +, \cdot)$ complex numbers. (next class)
(3) Set: $\mathbb{F}_p = \{ a \pmod{p} : 0 \le a \le p - 1 \}, p \ a \ prime$
 $a \pmod{p} \oplus b \pmod{p} = (a+b) \pmod{p}$
 $a (\mod{p}) \oplus b \pmod{p} = (ab) \mod{p}$
Then $(\mathbb{F}_p, \oplus, \odot)$ is a field.
This is the 1st example of finite field.

•