The Pigeonhole Principle.
Suppose that there are n+1 pigeous but
n pigeonholes then at least one pigeonhole
contains more than one pigeon.
Theorem 33.1 Dirichlet's Diophountime Approximation Theorem.
Let D be a positive integer that is not a square.
Then there are infinitely many pairs of positive integens
(x,y) such that

$$\left| x - y \sqrt{D} \right| < \frac{1}{y}$$
.
Remark: 11, When D is not a square, \sqrt{D} is irrational.
This is the only place value we use that D
is not a square. Indeed, this theorem
can be generalized to any irrational members
(2, Here is another way to virite
 $\left| x - y \sqrt{D} \right| < \frac{1}{y}$.

This means: for
$$\sqrt{D}$$
 (introduct), we can always find
rational numbers $\frac{1}{3}$ that is close to \sqrt{D} .
That's why we say this is an "approximation."
Proof of Theorem: Let Y be a large integer.
We inversigate:
 $\begin{pmatrix} D \cdot \sqrt{D} = N_0 + F_0 & N_0 = 0, F_0 \\ 1 \cdot \sqrt{D} = N_1 + F_1 & N_1 integer, 0 \le F_0 < 1 \\ (N_1 = L \sqrt{D}) \end{pmatrix}$
numbers.
 $\begin{pmatrix} Y+1 \\ 2 \cdot \sqrt{D} = N_2 + F_3 & N_2 integer, 0 \le F_0 < 1 \\ (N_2 = L 2 \sqrt{D}) \end{pmatrix}$
 $- - \cdot \\ Y \cdot \sqrt{D} = N_Y + F_Y & N_Y integer, 0 \le F_Y < 1 \\ (N_Y = [Y \cdot \sqrt{D}]) \end{pmatrix}$
=> Fo, F_1, ... FY are Y+1 integers (pigeons)
in Eo, 1).
We divide Eo, 1) into several smaller
internals (pigeonlas)

$$\begin{bmatrix} 0, \frac{1}{7} \end{pmatrix}, \begin{bmatrix} \frac{1}{7}, \frac{2}{7} \end{bmatrix}, \begin{bmatrix} \frac{2}{7}, \frac{2}{7} \end{bmatrix}, & \dots \begin{bmatrix} \frac{7}{7}, 1 \end{bmatrix}$$
Fo, $F_{1}, \dots F_{Y}$ (Y+1 pigeons) must fall into.
Y interals (Y pigeonholes)
By Pigeonhole principal, we can find $D \le m \le n \le T$
such that F_{m} and F_{n} is the same interval
(same pigeon hole)
This shows: $|F_{m} - F_{n}| < \frac{1}{Y}$
since each interval is of length $\frac{1}{Y}$.
 $m \sqrt{D} = Nm + F_{m} \Rightarrow F_{n} = m \sqrt{D} - Nm$ and
 $n \sqrt{D} = Nm + F_{n} \Rightarrow F_{n} = n \sqrt{D} - Nm$ and
 $n \sqrt{D} = Nn + F_{n} \Rightarrow F_{n} = n \sqrt{D} - Nn$ $N_{m} \sqrt{N_{n}}$
 $\Rightarrow |F_{m} - F_{n}| = |(N_{n} - N_{m}) - (n-m)\sqrt{D}| < \frac{1}{Y}$.
Then set $x = N_{n} - Nm$ and $y = n - m$
Since $0 \le m < n \le T$ $\Rightarrow y = n - m \le T$ $\Rightarrow y \le T \Rightarrow \frac{1}{T} < \frac{1}{Y}$.

We rext show: there are infinitely many pairs. Suppose
not, we can find
$$(x_i, y_i) \cdots (x_n, y_n)$$
 with
 $|x_i - y_i \overline{D}| < \overline{y_i}$ $i=1,2,...n$
Then we can find a such that:
 $|x_1 - y_i \overline{D}|, |x_i - y_i \overline{D}|, \cdots |x_n - y_n \overline{D}| > \alpha$.
Then we can find an integer γ' such that
 $\overline{\gamma} > \alpha$
We run the argument above before, and we can
find (x_0, y_0)
 $|x_0 - y_0 \overline{D}| < \overline{y_0} < \overline{\gamma} < \alpha$
The last "<" guarantees that (x_0, y_0) is a new pair.
A contradiction !

Theorem 33.2 (Dirichlet's Diophantine Approximation Theorem)
Let
$$\alpha > \infty$$
 be an irrational number. Then there are
infinitely many pairs of positive integers (x, y)
such that
 $|x - y \propto| < \frac{1}{y}$.