The Pigeonhole Principle.
\nSuppose that there are n+1 Pigeons but
\n*n* pigconholds then at least one pigeonable
\ncontains more than one pigeon.
\nThen there are infinitely many pairs of positive integers
\n
$$
(x,y)
$$
 such that
\n
$$
|x - y\sqrt{p}| < \frac{1}{y}
$$
\n\nRemark: 1, When D is not a square. The
\n (x,y) such that
\n
$$
|x - y\sqrt{p}| < \frac{1}{y}
$$
\n\nRemark: 1, When D is not a square. Indeed, this theorem
\n (x, y) is not a square. Indeed, this theorem
\n (x, y) is not a square. Indeed, this theorem
\n (x, y) is not a square. Indeed, this theorem
\n (x, y) is not a square. Indeed, this theorem
\n $(x - y\sqrt{p}) < \frac{1}{y}$
\n $(x - y\sqrt{p}) < \frac{1}{y}$
\nthat is:
$$
|\frac{x}{y} - \sqrt{p}| < \frac{1}{y}
$$

This means for ID (imthul)we can always find
\nrativad numbers
$$
\frac{x}{9}
$$
 that is close to $\frac{\sqrt{10}}{10}$
\nThat's why we say this is on "approximation."
\nProof of Theorem: Let Y be a longer integration."
\nWe investigate:
\n $0.\overline{10} = N_0 + F_0$ $N_0=0$, F_0
\n $1.\overline{10} = N_1 + F_1$ N_1 integer, $0 \leq F_0 < 1$
\n $(N_i = \lfloor .50 \rfloor)$
\n \therefore $(N_2 = \lfloor .250 \rfloor)$
\n \therefore $\sqrt{.5} = N_1 + F_1$ N_1 integer, $0 \leq F_1 < 1$
\n $(N_2 = \lfloor .250 \rfloor)$
\n $\Rightarrow F_0, F_1, \dots F_T$ are Yt1 integers (Pigeons)
\n $\frac{1}{10} \cdot \lfloor .250 \rfloor$
\nWe divide $[0, 1]$ into several smaller
\nintervals (Pigebuls)

$$
[0, \frac{1}{7}), [1, \frac{3}{7}, \frac{3}{7}), ... [1, \frac{1}{7}, 1]
$$
\n
$$
F_{0}, F_{\mu} ... F_{\eta} \quad (Y_{11} \text{ pigeons}) \text{ must fall into}
$$
\n
$$
Y \text{ iterals} \quad (Y \text{ pigeonhiles})
$$
\n
$$
By \text{ pigeonhs} \text{ pinaipol, we can find } 0 \leq m \leq N
$$
\n
$$
sum \text{ rise on } 1 \leq N
$$
\n
$$
Thus shows: [F_{m} - F_{n}] < Y
$$
\n
$$
Since each 1 \text{thend is } f \text{ length } \frac{1}{Y}.
$$
\n
$$
m \overline{D} = N_{m} + F_{m} \Rightarrow F_{m} = m \overline{D} - N_{m}
$$
\n
$$
m \overline{D} = N_{n} + F_{m} \Rightarrow F_{n} = m \overline{D} - N_{n}
$$
\n
$$
m \overline{D} = N_{n} + F_{m} \Rightarrow F_{n} = m \overline{D} - N_{n}
$$
\n
$$
m \overline{D} = N_{n} + F_{m} \Rightarrow F_{n} = n \overline{D} - N_{n}
$$
\n
$$
m \overline{D} = N_{n} + F_{m} \Rightarrow F_{n} = n \overline{D} - N_{n}
$$
\n
$$
m \overline{M}_{m} \Rightarrow |F_{m} - F_{n}| = |(N_{n} - N_{m}) - (n-m) \overline{D}| < \frac{1}{Y}.
$$
\n
$$
Thus becomes 1 \times N_{n} - N_{m} \text{ and } Y_{\overline{m}} = n - m
$$
\n
$$
Since 0 \leq m < n \leq Y \Rightarrow Y_{\overline{m}} - N_{m} \leq Y \Rightarrow Y \leq Y \Rightarrow Y \leq Y_{\overline{m}}
$$
\n
$$
X = N_{n} - N_{m} \quad \text{and} \quad Y_{\overline{m}} = n - N
$$
\n
$$
S_{n} = 0 \leq m < n \leq Y \Rightarrow Y_{\overline{m}} - N_{m} \leq Y \Rightarrow Y \leq Y \Rightarrow Y \leq Y_{\overline{m}}
$$

We next show: these are infinitely many pairs. Suppose
\nnot, we can find
$$
(x_1, y_1) \cdots (x_n, y_n)
$$
 with
\n $|x_i - y_i|_p| \le \frac{1}{y_i}$ $|z_{-1,2,2,2}$
\nThen we can find a such that:
\n $|x_1 - y_1|_p|$, $|x_1 - y_2|_p|$, $\cdots |x_n - y_n|_p| > \alpha$.
\nThen we can find an integer Y' such that
\n $\frac{1}{Y} > \alpha$
\nWe run the argument above before, and we can
\nfind (x_0, y_0)
\n $|x_0 - y_0|_p| < \frac{1}{y_0} < \frac{1}{Y'} < \alpha$
\nThe last " \le " guarantees that (x_0, y_0) is a new pair.
\nA contradiction !
\nNext, we replace ID by any irrational integers:

Theorem 33.2 (Dirichlet's Diophantine Approximation Theorem)
Let
$$
\alpha
$$
 so be an irrational number. Then there are
infinitely many pairs of positive integers (x,y)
such that $|x - y \alpha| < \frac{1}{y}$.