Let D be a fixed positive integer and it is not a square.
\n**1**4/s equation:
$$
x^2 - 2y^2 = 1
$$
.
\nQuestion: Find all positive integral solutions for Pells equation.
\n**1**160000. Find all positive integer and solutions for Pells equation
\n $x^2 - 2y^2 = 1$
\n $x^2 - 2y^2 = 1$

is ^a field For $\alpha = a + b\sqrt{D} \in \Omega$, we condefine its conjugate by: $\overline{\alpha} = \alpha - b \overline{\beta}$. Then $\alpha \cdot \overline{\alpha} = \alpha^2 - b^2 D$. Check: $(a^2-b^2D)(c^2-d^2D)$ = $(ac+bd D$ 2 (adtbc) · D $\alpha \cdot \overline{\alpha}$ $\beta \cdot \overline{\beta}$ $(\alpha \beta) \cdot (\overline{\alpha} \overline{\beta})$ Note: α = $x+y\sqrt{D}$ and (x,y) is a solution for Pell's equation. Then $\alpha \cdot \overline{\alpha} = 1$. We will skip the proof of "Moreover" pant. Pigeonhole Principle: suppose that we have infinitely many pigeons but only finitely many pigeonholes. Then there exists a pigeonhole with infinitely many pegions. Lemma: Let (x,y) be a pair of positive integers $x-y\text{ }\overline{p}\text{ }|<\frac{1}{y},$ then: $|x^2-y^2D| < 3\sqrt{D}$.

$$
1^{x-1}y^2D = |x+15D| \cdot |x-15D|
$$
\n
$$
Sinc [x-y^2D] < \frac{1}{3} \ ,
$$
\n
$$
\Rightarrow -\frac{1}{3} + \frac{1}{3} \cdot 5 = -\frac{1}{3} + \frac{1}{3} \cdot 5
$$

Proof of Theorem: Set
$$
T = 13\sqrt{D}
$$

For $-T \le n \le T$, n an integer, we define:
 $A(n) = \{ (x,y) : |x-y\sqrt{D}| < \frac{1}{9}$ and $x^2-y^2D = n \}$

By Dirichel's Diophative Approximation theorem, the
infinitely may pairs
$$
(x,y)
$$
 satisfying $|x-y1D| < \frac{1}{y}$
 (x,y) --- pigeons --- infinitely many

By Lemma, if
$$
|x-y\overline{1D}| < \frac{1}{9}
$$
, then $(x,y) \in A(n)$ for
some $n \in [-T,T]$
 $A(n) \dashrightarrow$ Piseonbule -- finitely may (2T+1)
By Pigeonbule principle, the exists an M $\in [-T, T]$
and $A(M)$ contains infinitely many pairs of (x,y)

Now
$$
A(M) = \{(x,y) : |x-y\sqrt{D}| < \frac{1}{y}, x^2 - y^2\sqrt{D} = M\}
$$

has infinitely many solutions.

Next, for each
$$
(x,y)
$$
 $\in \mathcal{A}(M)$, we consider $(x \pmod{M})$, $y \pmod{M}$)

$$
\begin{pmatrix}\n\alpha & \text{(mod }M), & b & \text{(mod }M)\n\end{pmatrix}\n\begin{matrix}\n0 \le \alpha \le M-1 \\
0 \le b \le M-1\n\end{matrix}
$$
\n
$$
(at mat M2)\n\tag{at mat }M2
$$

Then we can find $0 \le a, b \le M-1$ such that

$$
\mathcal{A}(M; a, b) = \left\{ (x, y) : \begin{cases} x - y\sqrt{D} & |< \frac{1}{3}, & x^2 - 2y^2 = M \\ x \equiv a \pmod{M} & y \equiv b \pmod{M} \end{cases} \right\}
$$

Contains
$$
uo-may elements.
$$

Take
$$
(x_1 y_1) \neq (x_2, y_1) \in \mathcal{A}(M; a, b)
$$
.

\nThen $x_1 = x_2 \pmod{M}$ $x_1^2 - y_1^2 D = M$

\n $y_1 = y_2 \pmod{M}$ $x_1^2 - y_2^2 D = M$

Assume
$$
X_1 > X_2 (>0)
$$
 then $y_1 > y_2 > 0$
\nSet: $X + y\sqrt{D} = \frac{X_1 - y_1\sqrt{D}}{X_2 - y_1\sqrt{D}} = \frac{(x_1-y_1\sqrt{D})(x_1+y_1\sqrt{D})}{x_2 - y_2^2 D}$
\n $= \frac{(x_1x_2 - y_1y_1D) + (x_1y_1 - x_1y_1)\sqrt{D}}{M}$

$$
= \frac{x_{1}x_{2}-y_{1}y_{2}D}{M} + \frac{x_{1}y_{2}-x_{1}y_{1}}{M}ID
$$
\n
$$
[lain: (x,y) is a solution for Pull's equation.
$$
\n
$$
Proof of Clolim: \begin{pmatrix} We need to show: \\ 0 (x,y) + (0,0) \\ 0 x-y^{2}D=1 \end{pmatrix}
$$
\n
$$
= \frac{(x_{1}^{2}-y_{1}^{2}D)(x_{1}^{2}-y_{2}^{2}D)}{M} = \frac{(x_{1}x_{2}-x_{1}y_{1}D)^{2} - (x_{1}x_{2}-x_{1}y_{1}D)^{2} - (x_{1}x_{2}-x_{1}y_{1}D)^{2} - (x_{1}x_{2}-x_{1}y_{1}D)^{2} - (x_{1}x_{2}-x_{1}y_{1}D)^{2} - (x_{1}x_{2}-x_{1}y_{1}D)^{2} - (x_{1}x_{2}-x_{1}y_{1}D)^{2} = (x_{1}x_{2}-y_{1}D)(x_{1}^{2}-y_{1}^{2}D) = \frac{M^{2}}{M^{2}} = 1.
$$
\n
$$
x_{1}x_{1}x-y_{1}y_{1}D \equiv x_{1}^{2} - y_{1}^{2}D(mod M) \equiv 0 (mod M)
$$
\n
$$
\Rightarrow x = \frac{x_{1}x_{2}-y_{1}y_{1}D}{M} is an integer.
$$
\n
$$
x_{1}y_{1}-x_{1}y_{1} \equiv x_{1}y_{1}-x_{1}y_{1} (mod M) \equiv 0 (mod M)
$$
\n
$$
\Rightarrow y = \frac{x_{1}y_{1}-x_{1}y_{1}}{M} is an integer.
$$
\n
$$
0: Bath x_{1}y_{1}ax \rightarrow x_{2}y_{2}ax \rightarrow x_{1}x_{2}Dy_{2}a
$$
\n
$$
\Rightarrow x \neq 0. We show: y \neq 0.
$$
\nIf $y=0$, then $x_{1}y_{2}=x_{1}y_{1}$

 $y_2 \cdot M = y_1 \cdot (x_1 - y_1) = y_2 \cdot x_1 - y_1 \cdot y_2$ $= \chi_1^2 y_1^2 - y_1^2 y_2^2 D = y_1^2 (x_2^2 - y_2^2 D)$ $=$ 4^2 M This frees: $y_i^2 = y_i^2 \implies y_i = y_i \quad (y_i, y_i >0)$ A contradiction $(X_{ij}y_i) \neq (x_{ij}y_k)$ This process also shows: every tike we have $(x_{1},y_{1})+(x_{2},y_{3})\in\mathcal{A}(M; a,b)$, we can get a solution for $x^2 - 1$, A(M; a,b) Gortorins infinitely may solutions and hence there are infinitely many solutions for $x^2 - Dy^2 = 1$.

П