Let D be a fixed positive integer and it is not a sphere.
Poll's equation:
$$\chi^2 - Dy^2 = 1$$
.
Question: Find all positive integral solutions for Poll's equation.
Theorem (Poll's equation theorem) Let D is a positive integer
that is not a perfect square. The Poll's equation
 $\chi^2 - Dy^2 = 1$
always have infinitely many solutions in positive integers.
Moreover, let (χ_i, y_i) be a solution with anallest χ_i ,
then every solution (χ_R, y_R) can be obtained by
taking primers:
 $\chi_R + y_R \sqrt{D} = (\chi_1 + y_R) \frac{1}{N}$ for $k = 1, 2, 3, \cdots$
Some facts: let D be a positive integers and it is not
a square. Then
 $Q(\sqrt{D}) = \{A + b, D : a, b \in R\}$
with $(A+b, D) + (c+d, D) = (A+c) + (b+d) \sqrt{D}$

is a field. we can define its conjugate by: For $x = a + b \int \overline{D} \in \Omega$, $\overline{X} = \Lambda - b \overline{D}.$ Then $\alpha \cdot \overline{\alpha} = \alpha^2 - b^2 D$. Check: $(a^2-b^2D)(c^2-d^2D)=(ac+bdD)^2-(ad+bc)^2\cdot D$ $\alpha \cdot \overline{\alpha} \quad \beta \cdot \overline{\beta} \quad (\alpha \beta) \cdot (\overline{\alpha} \overline{\beta})$ Pell's equation. Note: 2= X+y (D and (X,y) is a solution for Then $\alpha \cdot \overline{\alpha} = 1$. We will skip the proof of "Moreover" part. Pigeonhole Principle: suppose that we have infinitely many pigeons but only finitely many pigeonholes. Then there exists a pigeonhule with infinitely many pegions. Lemma: Let (X,y) be a pair of positive integers satisfying [X-y10] < y, then: $\left|\chi^2 - y^2 D\right| < 3\sqrt{D}.$

 $Proof: |x^2 - y^2 D| = |x + y J D| \cdot |x - y J D|$ Since (X-Y JD) < y, $\Rightarrow -\frac{1}{4} + \frac{1}{10} < x < \frac{1}{10} + \frac{1}{4}$ -3y10<-y+2y10< X+310<2310+y<3910 |X+YJD| < 3YJD \Rightarrow $\Rightarrow |x^2 - y^2 \sqrt{D}| = |x + y \sqrt{D}| |x - y \sqrt{D}|$ $< 3y\overline{D} \cdot y = 3\overline{D}.$ П Next page for the proof of I the theorem.

Proof of Theorem: Set
$$T = \lfloor 3 \lceil D \rfloor$$

For $-T \le n \le T$, n an integer, we define:
 $A(n) = \{(x,y): |x-y \cdot D| < \frac{1}{y} \text{ and } x^2 - y^2 D = n \}$

By Dirichele's Diophotine Approximation theorem, there are
infinitely many pairs (X,Y) satisfying
$$|X-YJD| < \frac{1}{y}$$

 $(X,Y) ---- pigeons --- infinitely many$

By Lemma, if
$$|X-YJD| < \frac{1}{7}$$
, then $(X,Y) \in \mathcal{A}(n)$ for
some $n \in [-T,T]$
 $\mathcal{A}(n) \longrightarrow pisconhile \longrightarrow finitely may (2T+1)$
By Rigeonhile principle, there exists an $M \in [-T,T]$
and $\mathcal{A}(M)$ contains infinitely many pairs of (X,Y)

Now
$$A(M) = \{(x,y) : |x-y\sqrt{D}| < \frac{1}{y}, x^2 - y^2\sqrt{D} = M \}$$

has infinitely many solutions. --
 $(x,y) -- pigeon --- infinitely many.$

$$\left(\begin{array}{ccc} \alpha \pmod{M}, b \pmod{M}\right) & & & & \\ 0 \le \alpha \le M - 1 & & & \\ 0 \le b \le M - 1 & & & & (at most M^2)\end{array}\right)$$

Then we can find 0\$2, b < M-1 such that

$$A(M; a, b) = \begin{cases} (x, y) : |x - y \sqrt{D}| < y, x^2 - Dy^2 = M \\ x \equiv a \pmod{M} \quad y \equiv b \pmod{M} \end{cases}$$

Take
$$(x_{1}, y_{1}) \neq (x_{1}, y_{1}) \in \mathcal{A}(M; a, b)$$
.
Then $X_{1} \equiv X_{2} \pmod{M} \qquad X_{1}^{2} - y_{1}^{2} D = M$
 $y_{1} \equiv y_{2} \pmod{M} \qquad X_{1}^{2} - y_{2}^{2} D = M$

Assume
$$X_1 > X_2 (>0)$$
 then $Y_1 > Y_2 > 0$
Set: $X + y \sqrt{D} = \frac{X_1 - y \sqrt{D}}{X_2 - y_2 \sqrt{D}} = \frac{(X_1 - Y_1 \sqrt{D})(X_2 + Y_2 \sqrt{D})}{X_2^2 - y_2^2 D}$
 $= \frac{(X_1 X_2 - Y_1 Y_2 D) + (X_1 Y_2 - X_2 Y_1) \sqrt{D}}{M}$

$$= \frac{x_1 x_2 - y_1 y_3 D}{M} + \frac{x_1 y_2 - x_2 y_1}{M} \int D$$
(laim: $(x_1 y)$ is a solution for Poll's equation.
Proof of Claim: $\begin{pmatrix} We need to show: \\ D (x_1 y) \neq (0, 0) \\ @ x^2 - y^2 D = 1 \\ @ x_1 y are integers. \end{pmatrix}$
(2): $x^2 - y^2 D = \left(\frac{x_1 x_2 - y_1 y_2 D}{M}\right)^2 - \left(\frac{x_1 y_2 - x_2 y_1}{M}\right)^2$. D

$$= \frac{(x_1^2 - y_1^2 D)(x_2^2 - y_2^2 D)}{M^2} = \frac{M^2}{M^2} = 1.$$
(3) $x_1 x_1 - y_1 y_2 D = x_1^2 - y_1^2 D \pmod{M} \equiv 0 \pmod{M}$

$$\Rightarrow x = \frac{x_1 x_2 - y_1 y_2 D}{M} \text{ is an integer.}$$
 $x_1 y_3 - x_2 y_1 = x_1 y_1 - x_1 y_1 \pmod{M} \equiv 0 \pmod{M}$

$$\Rightarrow y = \frac{x_1 (y_1 - x_2 y_1)}{M} \text{ is an integer.}$$
(0: Both $x_1 y$ are integoes and $x^2 - Dy^2 = 1$

$$\Rightarrow x \neq 0.$$
 We show: $y \neq 0.$
If $y=0$, then $x_1 y_2 = x_2 y_1$

 $y_{D}^{2} \cdot M = y_{1}^{2} \left(x_{1}^{2} - y_{1}^{2} D \right) = y_{2}^{2} x_{1}^{2} - y_{1}^{2} y_{2}^{2} D$ $= \chi_{1}^{2} y_{1}^{2} - y_{1}^{2} y_{2}^{2} D = y_{1}^{2} (\chi_{2}^{2} - y_{1}^{2} D)$ = 9, MThis forces: $y_1^2 = y_2^2 \implies y_1 = y_2 (y_1, y_2 > 0)$ A contradiction $((X_i, y_i) \neq (X_i, y_i))$ This process also shows: every the we have $(x_1, y_1) \neq (x_1, y_2) \in \mathcal{A}(\mathcal{M}; a, b)$, we can get a solution for $\chi^2 - Py^2 = 1$. A(M; a,b) contains infinitely many solutions and hence there are infinitely many solutions for $X^2 - Dy^2 = 1.$

Л