Recall:
$$Z \subseteq Q \subseteq R \subseteq C$$

integers rational read complex
numbers number.
Let a be a complex number.
Definition: α is an algebraic integer if we can find a
phynomial $f(x) = x^n + a_{n+1}x^{n+1} + \dots a_1x + a_0$
with $a_{n+1}, \dots, a_{1,0} \in Z$
such that $f(\alpha) = 0$.
Definition: α is an algebraic number if we can find a
phynomial $g(x) = a_n x^n + \dots a_1x + a_0$
with $a_n, a_{n+1}, \dots, a_0 \in Q$
such that $g(\alpha) = 0$.
Remark: (1) If α is an algebraic integer, then α is
an algebraic number. This is because: $Z \subseteq Q$.
(2) Let α be an algebraic number. Then we can
find $g(x) = a_n x^n + a_{n+1} x^{n+1} + \dots a_0$.

Since
$$a_n, \dots a_0$$
 are rational numbers, we can
write:
 $a_n = \frac{r_n}{s_n}$, $a_{n+1} = \frac{r_{n+1}}{s_{n+1}}$, $\dots a_1 = \frac{r_1}{s_1}$, $a_{n+1} = \frac{r_0}{s_1}$
with $r_n, \dots r_0$, s_n , $\dots s_0 \in \mathbb{Z}$.
Then we multiply $g(x) = 0$ by $s_n s_{n+1} \dots s_0$
we get a new polynomial
 $g(x) = a_n x^n + \dots a_1 x + a_0$ a_n , $\dots a_n \in \mathbb{Z}$
such that $g(\alpha) = 0$.
This shows that: if α is an algebraic number, then
we can find a polynomial $g(x)$ with coefficients in \mathbb{Z}
such that $g(\alpha) = 0$.
Therefore, the difference between algebraic integers and
algebraic numbers is:
 $f(\alpha) = 0$ for $f(\alpha) = 0$.
Therefore for $g(\alpha) = 1x^n + a_{n+1}x^{n-1} + \dots a_n \longrightarrow$ algebraic integers
 $g(\alpha) = 0$ for $g(\alpha) = (a_nx^n + a_{n+1}x^{n-1} + \dots a_n) \longrightarrow$ algebraic numbers
 u leading coefficient.
Definition: A polynomial is monic if the leading coefficient is 1 .

Some notations: let A be a set.

$$A[x] = \{ polynomials with wefficients in A \}$$

Definition': α is an algebraic integer if we can find
a manic $f(x) \in \mathbb{Z}[x]$ such that $f(x) = 0$
Definition': α is an algebraic number if we can find
 $g(x) \in \mathbb{Z}[x]$ such that $g(\alpha) = 0$.
Example: $(1, i = J-1)$ is an algebraic integer (and hence
an algebraic number)
This is because: $i^2 = -1$ and hence
 i is a solution for $f(x) = x^2 + 1$.
 $(2) \quad \sqrt{2} + \sqrt{3}$ is an algebraic integer (and hence
 an algebraic number).
Prof: Set $x = \sqrt{2} + \sqrt{3}$ Then $x - \sqrt{2} = \sqrt{3}$
 $\Rightarrow (x - \sqrt{2})^2 = (\sqrt{3})^2 = y - x^2 - 2\sqrt{2}x + 2 = 3$
 $\Rightarrow x^2 - 1 = 2\sqrt{2}x$

