Recall: Let ZEQ.

$$\alpha$$
 is algebraic if we can find $f(x) \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$
Otherwise, α is transcendental.

In this lecture, we will prove:

$$\beta = \sum_{n=1}^{n} \frac{1}{10^{n!}} = 0.11001$$
. Liouville's number.
is transcendented.

Theorem (Liouville's Inequality) Let
$$\alpha$$
 be an algebraic number
and α is a root of the polynomial
 $f(x) = Co X^d + C_1 X^{d-1} + \cdots C_{d-1} X + C_d$
with integral coefficients. Let D be any number with
 $D = d$.
Then there are only finitely many rationals $\frac{A}{b}$
 $(a, b \in \mathbb{Z})$ that sostisfy the inequality:
 $\left|\frac{A}{b} - \alpha\right| \leq \frac{1}{b}D$.

Remark: Compare this with Dirichlet's Diophantine
Approximation Theorem !
We use an example to highlight the idea of proof:
Consider
$$x = J\overline{2}$$
 $f(x) = x^2 - 2$.
Suppose that $D > 2$ and $\frac{a}{b}$ is a rational satisfying
 $\left|\frac{a}{b} - J\overline{2}\right| < \frac{1}{b^{p}}$.
Idea: find an upper bound for $\left|f(\frac{a}{b})\right|$
a lower bound for $\left|f(\frac{a}{b})\right|$
Upper bound: $f(x) = x^2 - 2 = (x - J\overline{2})(x + 2)$
 $\left|f(\frac{a}{b})\right| = \left|\frac{a}{b} - J\overline{2}\right| \cdot \left|\frac{a}{b} + J\overline{2}\right|$
 $\left|\frac{a}{b} - J\overline{2}\right| < \frac{1}{b^{p}} < 1 \Rightarrow \left|\frac{a}{b}\right| < \overline{3} + |z|$
 $\left|f(\frac{a}{b})\right| = \left|\frac{a}{b} - \overline{3}\right| \left|\frac{a}{b} + \overline{3}\right|$
 $\left|\frac{a}{b} - \overline{3}\right| < \frac{1}{b^{p}} < 3 = \frac{3}{b^{p}}$.

Lower bound:
$$f\left(\frac{a}{b}\right) = \left(\frac{a}{b}\right)^2 - 2 = \frac{a^2}{b^2} - 2 = \frac{a^{2-2b^2}}{b^2}$$
Notive:
$$f\left(\frac{a}{b}\right) \neq 0 \quad \Rightarrow \quad a^2 - 2b^2 \neq 0 \quad \Rightarrow \quad \left|a^2 - 2b^2\right| \geq 1$$

$$\Rightarrow \left|f\left(\frac{a}{b}\right)\right| = \left|\frac{a^2 - 2b^2}{b^2}\right| \geq \frac{1}{b^2}$$

Combine two results; $\frac{1}{b^2} \leq \left| f(\frac{a}{b}) \right| \leq \frac{3}{b^2}$ $\Rightarrow \qquad b^{D-2} \in 3$ $D > 2 \Rightarrow b = 1, 2$. \sim finitely many b. For each b, there are at most finitely many choice of a since $\left|\frac{A}{b} - \sqrt{2}\right| < 1$. Theefore, there are only finitely many choice of $\frac{a}{b}$ such that $\left|\frac{a}{b} - \sqrt{2}\right| < \frac{1}{b^{D}}$ Д Lionville's Inequality: Proof of Let a be a solution for a polynomial f(x) EZ[x] Lemma:

then
$$f(x) = (x - \alpha) \cdot g(x)$$
We ship the prof of this lemma.
We unite: $g(x) = e_1 X^{d-1} + e_2 X^{d-2} + \dots + e_{d+1} X + e_d$.
Note: $e_1, \dots + e_d$ are not necessarily integers.
Now: assume $D > d = deg f(x)$.
and $\frac{a}{b}$ satisfies: $\left[\frac{a}{b} - \alpha\right] < \frac{1}{b^{D}} (
(and hence $\left|\frac{a}{b}\right| \le |\alpha| + 1$)
Upper bound: $f(x) = (x - \alpha) \cdot g(x)$
 $\left|f(\frac{a}{b})\right| = \left|\frac{a}{b} - \alpha\right| \cdot \left|g(\frac{a}{b})\right|$
Triongle's inequality: $y, z \in R$, $\left|y + z\right| \le \left|y\right| + \left|z\right|$
 $\left[g(\frac{a}{b})\right] = \left|e_1(\frac{a}{b})^{d-1} + \dots + e_{d+1}(\frac{a}{b}) + e_d\right|$
 $\le |e_1| |\frac{a}{b}|^{d-1} + |e_2| (|\alpha|+1)^{d-2} + \dots + |ed+1| |\frac{a}{b}| + |ed|$$

≤ K. a constant.

This will imply: $\begin{aligned} \left| f\left(\frac{a}{b}\right) \right| &= \left| \frac{a}{b} - \alpha \right| \cdot \left| g\left(\frac{a}{b}\right) \right| \\ &< \frac{1}{b^{D}} \cdot k = \frac{k}{b^{D}} \\ \text{Lower bound}: \quad f(x) &= \cos x^{d} + \cdots + \cos t \\ f\left(\frac{a}{b}\right) &= \cos \left(\frac{a}{b}\right)^{d} + \cdots + \cos t \\ f\left(\frac{a}{b}\right) &= \cos \left(\frac{a}{b}\right)^{d} + \cdots + \cos t \\ &= \frac{\cos a^{d} + \cos t^{d} + \cos t$

We can assure $f(\frac{a}{b}) \neq 0$ (since there are at most d-solutions for f(x)=0.) Then $|C_0 a^d + \cdots + C_d b^d| \ge 1$ $\Rightarrow |f(\frac{a}{b})| \ge \frac{1}{b^d}$. Combine two results $\frac{1}{b^d} \le |f(\frac{a}{b})| < \frac{k}{b^d}$.

This implies:
$$b^{D-d} < K$$
.
 $D > d \Rightarrow$ There are only finitely many choice of b.
For each b, there are omly finitely many a satisfying
 $\left|\frac{a}{b} - \alpha\right| < 1$.
Therefore, there are only finitely many $\frac{a}{b}$ such
that $\left|\frac{a}{b} - \alpha\right| < \frac{1}{b^{D}}$.

$$\Rightarrow |\beta_{N} - \beta| = \beta - \beta_{N}.$$
• Set $\beta_{N} = \frac{a_{N}}{b_{N}} \Rightarrow b_{N} = |0^{N!}$
• $\beta - \beta_{N} = \frac{1}{|0^{(N+1)!}} + \frac{1}{|0^{(N+3)!}} + \cdots$

$$< \frac{2}{|0^{(N+1)!}} = \frac{2}{|0^{(N+1)!}} = \frac{2}{b_{N}} + |-|| < \frac{1}{b_{N}}$$
This means: $|\beta_{N} - \beta| = |\frac{a_{N}}{b_{N}} - \beta| < \frac{1}{b_{N}}$.
Now: let $D > 0$ and we can choose $N > D$.
Then for any β_{M} with $M \ge N$
 $\left|\beta_{N} - \beta\right| = \left|\frac{a_{N}}{b_{N}} - \beta\right| < \frac{1}{b_{N}}$.
This means, there are infinitely many rational solutions
for $\left|\frac{a}{b} - \beta\right| < \frac{1}{b^{0}}$.

Theorem (Transcendence of
$$\beta$$
)
Liouville's number $\beta = \sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is transcendental.
Proof: Suppose not. Then β is algebraic and we
can find $f(x) \in \mathbb{Z}[x]$ such that $f(\beta)=0$.
Let $d = deg. f(x)$. Then by Liouville's inequality,
there are finitely many rational solutions $\frac{\alpha}{b}$
such that $\left|\frac{\alpha}{b} - \beta\right| < \frac{1}{b^{d+1}}$
However, the lemma is claiming that there are
infinitely many solutions such that
 $\left|\frac{\alpha}{b} - \beta\right| < \frac{1}{b^{d+1}}$.
A contradiction!